BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 25945701)

  • 1. Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past, present and future.
    Hol WG
    Acta Crystallogr F Struct Biol Commun; 2015 May; 71(Pt 5):485-99. PubMed ID: 25945701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug target identification in intracellular and extracellular protozoan parasites.
    Müller J; Hemphill A
    Curr Top Med Chem; 2011; 11(16):2029-38. PubMed ID: 21619514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations.
    Ogungbe IV; Setzer WN
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27775577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases?
    Cortez-Maya S; Moreno-Herrera A; Palos I; Rivera G
    Curr Med Chem; 2020; 27(32):5403-5428. PubMed ID: 31264538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases.
    Scholte LLS; Mourão MM; Pais FS; Melesina J; Robaa D; Volpini AC; Sippl W; Pierce RJ; Oliveira G; Nahum LA
    Infect Genet Evol; 2017 Sep; 53():175-188. PubMed ID: 28506839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural alterations in organelles of parasitic protozoa induced by different classes of metabolic inhibitors.
    Rodrigues JC; de Souza W
    Curr Pharm Des; 2008; 14(9):925-38. PubMed ID: 18473841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.
    Pizarro JC; Hills T; Senisterra G; Wernimont AK; Mackenzie C; Norcross NR; Ferguson MA; Wyatt PG; Gilbert IH; Hui R
    PLoS Negl Trop Dis; 2013; 7(10):e2492. PubMed ID: 24147171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitors of the Purine Salvage Pathway: A Valuable Approach for Antiprotozoal Chemotherapy?
    Berg M; Van der Veken P; Goeminne A; Haemers A; Augustyns K
    Curr Med Chem; 2010; 17(23):2456-81. PubMed ID: 20491648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of targets for drug development against protozoan parasites.
    de Azevedo WF; Soares MB
    Curr Drug Targets; 2009 Mar; 10(3):193-201. PubMed ID: 19275556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.
    Soeiro MN; Werbovetz K; Boykin DW; Wilson WD; Wang MZ; Hemphill A
    Parasitology; 2013 Jul; 140(8):929-51. PubMed ID: 23561006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemosensitizers in drug transport mechanisms involved in protozoan resistance.
    Pradines B; Pagès JM; Barbe J
    Curr Drug Targets Infect Disord; 2005 Dec; 5(4):411-31. PubMed ID: 16535862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development.
    Cavazzuti A; Paglietti G; Hunter WN; Gamarro F; Piras S; Loriga M; Allecca S; Corona P; McLuskey K; Tulloch L; Gibellini F; Ferrari S; Costi MP
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1448-53. PubMed ID: 18245389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation.
    Hammarton TC; Mottram JC; Doerig C
    Prog Cell Cycle Res; 2003; 5():91-101. PubMed ID: 14593704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based approach to the identification of a novel group of selective glucosamine analogue inhibitors of Trypanosoma cruzi glucokinase.
    D'Antonio EL; Deinema MS; Kearns SP; Frey TA; Tanghe S; Perry K; Roy TA; Gracz HS; Rodriguez A; D'Antonio J
    Mol Biochem Parasitol; 2015 Dec; 204(2):64-76. PubMed ID: 26778112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold compounds as cysteine protease inhibitors: perspectives for pharmaceutical application as antiparasitic agents.
    Massai L; Messori L; Micale N; Schirmeister T; Maes L; Fregona D; Cinellu MA; Gabbiani C
    Biometals; 2017 Apr; 30(2):313-320. PubMed ID: 28283781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinases as targets for anti-parasitic chemotherapy.
    Doerig C
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):155-68. PubMed ID: 15023358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target.
    Angelucci F; Miele AE; Ardini M; Boumis G; Saccoccia F; Bellelli A
    Mol Biochem Parasitol; 2016; 206(1-2):2-12. PubMed ID: 27002228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contemporary strategies and methods of modeling antiparasitic drugs].
    Boczoń K
    Wiad Parazytol; 1995; 41(1):43-52. PubMed ID: 7638963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parasite Polyamines as Pharmaceutical Targets.
    Roberts S; Ullman B
    Curr Pharm Des; 2017; 23(23):3325-3341. PubMed ID: 28571553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.