BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 25945702)

  • 1. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?
    Kumpula EP; Kursula I
    Acta Crystallogr F Struct Biol Commun; 2015 May; 71(Pt 5):500-13. PubMed ID: 25945702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites.
    Baum J; Richard D; Healer J; Rug M; Krnajski Z; Gilberger TW; Green JL; Holder AA; Cowman AF
    J Biol Chem; 2006 Feb; 281(8):5197-208. PubMed ID: 16321976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gliding motility in apicomplexan parasites.
    Heintzelman MB
    Semin Cell Dev Biol; 2015 Oct; 46():135-42. PubMed ID: 26428297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.
    Skillman KM; Diraviyam K; Khan A; Tang K; Sept D; Sibley LD
    PLoS Pathog; 2011 Oct; 7(10):e1002280. PubMed ID: 21998582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii.
    Sahoo N; Beatty W; Heuser J; Sept D; Sibley LD
    Mol Biol Cell; 2006 Feb; 17(2):895-906. PubMed ID: 16319175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells].
    Frénal K; Soldati-Favre D
    Med Sci (Paris); 2013 May; 29(5):515-22. PubMed ID: 23732101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.
    Olshina MA; Wong W; Baum J
    IUBMB Life; 2012 May; 64(5):370-7. PubMed ID: 22454107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion.
    Whitelaw JA; Latorre-Barragan F; Gras S; Pall GS; Leung JM; Heaslip A; Egarter S; Andenmatten N; Nelson SR; Warshaw DM; Ward GE; Meissner M
    BMC Biol; 2017 Jan; 15(1):1. PubMed ID: 28100223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins.
    Schüler H; Matuschewski K
    Traffic; 2006 Nov; 7(11):1433-9. PubMed ID: 17010119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gliding motility powers invasion and egress in Apicomplexa.
    Frénal K; Dubremetz JF; Lebrun M; Soldati-Favre D
    Nat Rev Microbiol; 2017 Nov; 15(11):645-660. PubMed ID: 28867819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role.
    Bullen HE; Tonkin CJ; O'Donnell RA; Tham WH; Papenfuss AT; Gould S; Cowman AF; Crabb BS; Gilson PR
    J Biol Chem; 2009 Sep; 284(37):25353-63. PubMed ID: 19561073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility.
    Rompikuntal PK; Kent RS; Foe IT; Deng B; Bogyo M; Ward GE
    mSphere; 2021 May; 6(3):. PubMed ID: 34011689
    [No Abstract]   [Full Text] [Related]  

  • 13. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.
    Jacot D; Tosetti N; Pires I; Stock J; Graindorge A; Hung YF; Han H; Tewari R; Kursula I; Soldati-Favre D
    Cell Host Microbe; 2016 Dec; 20(6):731-743. PubMed ID: 27978434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research Advances on Gliding-associated Proteins of Toxoplasma gondii].
    Li RH; Yin GR
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2016 Oct; 34(5):463-7. PubMed ID: 30130043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acyl-CoA synthetase
    Charital S; Shunmugam S; Dass S; Alazzi AM; Arnold C-S; Katris NJ; Duley S; Quansah NA; Pierrel F; Govin J; Yamaryo-Botté Y; Botté CY
    mBio; 2024 Apr; 15(4):e0042724. PubMed ID: 38501871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector.
    Hliscs M; Sattler JM; Tempel W; Artz JD; Dong A; Hui R; Matuschewski K; Schüler H
    J Biol Chem; 2010 Apr; 285(15):11572-83. PubMed ID: 20083609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin/myosin-based gliding motility in apicomplexan parasites.
    Matuschewski K; Schüler H
    Subcell Biochem; 2008; 47():110-20. PubMed ID: 18512346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin regulation in the malaria parasite.
    Sattler JM; Ganter M; Hliscs M; Matuschewski K; Schüler H
    Eur J Cell Biol; 2011 Nov; 90(11):966-71. PubMed ID: 21256619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa.
    Seeber F
    Curr Drug Targets Immune Endocr Metabol Disord; 2003 Jun; 3(2):99-109. PubMed ID: 12769782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and regulatory insights into the glideosome-associated connector from
    Kumar A; Vadas O; Dos Santos Pacheco N; Zhang X; Chao K; Darvill N; Rasmussen HØ; Xu Y; Lin GM; Stylianou FA; Pedersen JS; Rouse SL; Morgan ML; Soldati-Favre D; Matthews S
    Elife; 2023 Apr; 12():. PubMed ID: 37014051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.