These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
745 related articles for article (PubMed ID: 25945836)
1. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836 [TBL] [Abstract][Full Text] [Related]
2. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. Ghosh AK; Sardar AH; Mandal A; Saini S; Abhishek K; Kumar A; Purkait B; Singh R; Das S; Mukhopadhyay R; Roy S; Das P FASEB J; 2015 May; 29(5):2081-98. PubMed ID: 25690656 [TBL] [Abstract][Full Text] [Related]
3. G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS‑MAPK axis pathway. Zhang Q; Han Q; Yang Z; Ni Y; Agbana YL; Bai H; Yi Z; Yi X; Kuang Y; Zhu Y Int J Oncol; 2020 Jul; 57(1):197-212. PubMed ID: 32319593 [TBL] [Abstract][Full Text] [Related]
4. The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma. Wang J; Zhang P; Zhong J; Tan M; Ge J; Tao L; Li Y; Zhu Y; Wu L; Qiu J; Tong X Oncotarget; 2016 May; 7(19):27142-57. PubMed ID: 27049827 [TBL] [Abstract][Full Text] [Related]
5. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress. Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645 [TBL] [Abstract][Full Text] [Related]
6. Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4. Verma N; Pink M; Boland S; Rettenmeier AW; Schmitz-Spanke S Sci Rep; 2017 Aug; 7(1):9773. PubMed ID: 28851999 [TBL] [Abstract][Full Text] [Related]
7. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
8. Deficiency of the X-inactivation escaping gene Zheng Q; Li P; Zhou X; Qiang Y; Fan J; Lin Y; Chen Y; Guo J; Wang F; Xue H; Xiong J; Li F Theranostics; 2021; 11(18):8674-8691. PubMed ID: 34522206 [No Abstract] [Full Text] [Related]
9. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Langbein S; Frederiks WM; zur Hausen A; Popa J; Lehmann J; Weiss C; Alken P; Coy JF Int J Cancer; 2008 Jun; 122(11):2422-8. PubMed ID: 18302154 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Kathagen A; Schulte A; Balcke G; Phillips HS; Martens T; Matschke J; Günther HS; Soriano R; Modrusan Z; Sandmann T; Kuhl C; Tissier A; Holz M; Krawinkel LA; Glatzel M; Westphal M; Lamszus K Acta Neuropathol; 2013 Nov; 126(5):763-80. PubMed ID: 24005892 [TBL] [Abstract][Full Text] [Related]
11. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Kathagen-Buhmann A; Schulte A; Weller J; Holz M; Herold-Mende C; Glass R; Lamszus K Neuro Oncol; 2016 Sep; 18(9):1219-29. PubMed ID: 26917237 [TBL] [Abstract][Full Text] [Related]
12. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. Lei S; Zavala-Flores L; Garcia-Garcia A; Nandakumar R; Huang Y; Madayiputhiya N; Stanton RC; Dodds ED; Powers R; Franco R ACS Chem Biol; 2014 Sep; 9(9):2032-48. PubMed ID: 24937102 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. De Preter G; Neveu MA; Danhier P; Brisson L; Payen VL; Porporato PE; Jordan BF; Sonveaux P; Gallez B Oncotarget; 2016 Jan; 7(3):2910-20. PubMed ID: 26543237 [TBL] [Abstract][Full Text] [Related]
14. Modulation of glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro maturation. Alvarez GM; Ferretti EL; Gutnisky C; Dalvit GC; Cetica PD Reprod Domest Anim; 2013 Aug; 48(4):545-53. PubMed ID: 23189959 [TBL] [Abstract][Full Text] [Related]
15. Two high-rate pentose-phosphate pathways in cancer cells. Cossu V; Bonanomi M; Bauckneht M; Ravera S; Righi N; Miceli A; Morbelli S; Orengo AM; Piccioli P; Bruno S; Gaglio D; Sambuceti G; Marini C Sci Rep; 2020 Dec; 10(1):22111. PubMed ID: 33335166 [TBL] [Abstract][Full Text] [Related]
16. [Enzymic spectrum of preneoplastic and neoplastic changes induced by 1,2-dimethylhydrazine in mouse kidneys]. Ahn IS; Cheteris GIu; Turusov VS; Bannash P Arkh Patol; 1995; 57(6):52-7. PubMed ID: 8742189 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484 [TBL] [Abstract][Full Text] [Related]
18. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Li B; Qiu B; Lee DS; Walton ZE; Ochocki JD; Mathew LK; Mancuso A; Gade TP; Keith B; Nissim I; Simon MC Nature; 2014 Sep; 513(7517):251-5. PubMed ID: 25043030 [TBL] [Abstract][Full Text] [Related]
19. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Yamamoto Y; Hosoda K; Imahori T; Tanaka J; Matsuo K; Nakai T; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E Brain Res; 2018 May; 1687():82-94. PubMed ID: 29510140 [TBL] [Abstract][Full Text] [Related]
20. [Activity of key enzymes of the glycolytic and pentose phosphate pathways in plasmid-containing Staphylococci]. Gavriliuk VG; Kozitskaia SN; Golodok LP; Vinnikov AI Ukr Biokhim Zh (1978); 1996; 68(1):45-8. PubMed ID: 8755100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]