These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 25946108)

  • 1. MorphoGraphX: A platform for quantifying morphogenesis in 4D.
    Barbier de Reuille P; Routier-Kierzkowska AL; Kierzkowski D; Bassel GW; Schüpbach T; Tauriello G; Bajpai N; Strauss S; Weber A; Kiss A; Burian A; Hofhuis H; Sapala A; Lipowczan M; Heimlicher MB; Robinson S; Bayer EM; Basler K; Koumoutsakos P; Roeder AH; Aegerter-Wilmsen T; Nakayama N; Tsiantis M; Hay A; Kwiatkowska D; Xenarios I; Kuhlemeier C; Smith RS
    Elife; 2015 May; 4():05864. PubMed ID: 25946108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Plant Growth and Cell Proliferation with MorphoGraphX.
    Strauss S; Sapala A; Kierzkowski D; Smith RS
    Methods Mol Biol; 2019; 1992():269-290. PubMed ID: 31148045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of live cell images of the Arabidopsis thaliana plant.
    Cunha A; Tarr PT; Roeder AH; Altinok A; Mjolsness E; Meyerowitz EM
    Methods Cell Biol; 2012; 110():285-323. PubMed ID: 22482954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying cell shape and gene expression in the shoot apical meristem using MorphoGraphX.
    de Reuille PB; Robinson S; Smith RS
    Methods Mol Biol; 2014; 1080():121-34. PubMed ID: 24132424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D morphological analysis of Arabidopsis sepals.
    He X; Xu S; Hong L
    Methods Cell Biol; 2020; 160():311-326. PubMed ID: 32896325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion.
    Ampomah-Dwamena C; Morris BA; Sutherland P; Veit B; Yao JL
    Plant Physiol; 2002 Oct; 130(2):605-17. PubMed ID: 12376628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Stained Plant Tissues to Quantitative Cell Segmentation Analysis with MorphoGraphX.
    Kerstens M; Strauss S; Smith R; Willemsen V
    Methods Mol Biol; 2020; 2122():63-83. PubMed ID: 31975296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ImageJ SurfCut: a user-friendly pipeline for high-throughput extraction of cell contours from 3D image stacks.
    Erguvan Ö; Louveaux M; Hamant O; Verger S
    BMC Biol; 2019 May; 17(1):38. PubMed ID: 31072374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis.
    Ren Z; Li Z; Miao Q; Yang Y; Deng W; Hao Y
    J Exp Bot; 2011 May; 62(8):2815-26. PubMed ID: 21266497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A principal skeleton algorithm for standardizing confocal images of fruit fly nervous systems.
    Qu L; Peng H
    Bioinformatics; 2010 Apr; 26(8):1091-7. PubMed ID: 20172944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Tracking of Migrating Cells from Live Microscopy Time-Lapses.
    Tosi S; Campbell K
    Methods Mol Biol; 2019; 2040():385-395. PubMed ID: 31432489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live confocal imaging of Arabidopsis flower buds.
    Prunet N; Jack TP; Meyerowitz EM
    Dev Biol; 2016 Nov; 419(1):114-120. PubMed ID: 26992363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of reproductive development in tomato.
    Lozano R; Giménez E; Cara B; Capel J; Angosto T
    Int J Dev Biol; 2009; 53(8-10):1635-48. PubMed ID: 19876848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape.
    Xiao H; Radovich C; Welty N; Hsu J; Li D; Meulia T; van der Knaap E
    BMC Plant Biol; 2009 May; 9():49. PubMed ID: 19422692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.
    Wait E; Winter M; Bjornsson C; Kokovay E; Wang Y; Goderie S; Temple S; Cohen AR
    BMC Bioinformatics; 2014 Oct; 15(1):328. PubMed ID: 25281197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The annotation and analysis of complex 3D plant organs using 3DCoordX.
    Vijayan A; Strauss S; Tofanelli R; Mody TA; Lee K; Tsiantis M; Smith RS; Schneitz K
    Plant Physiol; 2022 Jun; 189(3):1278-1295. PubMed ID: 35348744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    Comput Math Methods Med; 2013; 2013():381356. PubMed ID: 23762186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.