These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25946172)
1. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. Burke MP; Goldsmith CF; Klippenstein SJ; Welz O; Huang H; Antonov IO; Savee JD; Osborn DL; Zádor J; Taatjes CA; Sheps L J Phys Chem A; 2015 Jul; 119(28):7095-115. PubMed ID: 25946172 [TBL] [Abstract][Full Text] [Related]
2. New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling. Welz O; Burke MP; Antonov IO; Goldsmith CF; Savee JD; Osborn DL; Taatjes CA; Klippenstein SJ; Sheps L J Phys Chem A; 2015 Jul; 119(28):7116-29. PubMed ID: 25860187 [TBL] [Abstract][Full Text] [Related]
3. Measurements and modeling of DO2 formation in the reactions of C2D5 and C3D7 radicals with O2. Estupiñán EG; Smith JD; Tezaki A; Klippenstein SJ; Taatjes CA J Phys Chem A; 2007 May; 111(19):4015-30. PubMed ID: 17388267 [TBL] [Abstract][Full Text] [Related]
4. Role of O2 + QOOH in low-temperature ignition of propane. 1. Temperature and pressure dependent rate coefficients. Goldsmith CF; Green WH; Klippenstein SJ J Phys Chem A; 2012 Apr; 116(13):3325-46. PubMed ID: 22250995 [TBL] [Abstract][Full Text] [Related]
5. Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV. Reactions of propyl and butyl radicals with O2. DeSain JD; Taatjes CA; Miller JA; Klippenstein SJ; Hahn DK Faraday Discuss; 2001; (119):101-20; discussion 121-43. PubMed ID: 11877987 [TBL] [Abstract][Full Text] [Related]
6. Ab initio and transition state theory study of the OH + HO Monge-Palacios M; Sarathy SM Phys Chem Chem Phys; 2018 Feb; 20(6):4478-4489. PubMed ID: 29372728 [TBL] [Abstract][Full Text] [Related]
7. Detailed modeling of low-temperature propane oxidation: 1. The role of the propyl + O(2) reaction. Huynh LK; Carstensen HH; Dean AM J Phys Chem A; 2010 Jun; 114(24):6594-607. PubMed ID: 20509639 [TBL] [Abstract][Full Text] [Related]
8. Measurements and automated mechanism generation modeling of OH production in photolytically initiated oxidation of the neopentyl radical. Petway SV; Ismail H; Green WH; Estupiñan EG; Jusinski LE; Taatjes CA J Phys Chem A; 2007 May; 111(19):3891-900. PubMed ID: 17439192 [TBL] [Abstract][Full Text] [Related]
9. Kinetic modeling of methyl butanoate in shock tube. Huynh LK; Lin KC; Violi A J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study. Eskola AJ; Carr SA; Shannon RJ; Wang B; Blitz MA; Pilling MJ; Seakins PW; Robertson SH J Phys Chem A; 2014 Aug; 118(34):6773-88. PubMed ID: 25069059 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of elementary steps in the reactions of atomic bromine with isoprene and 1,3-butadiene under atmospheric conditions. Laine PL; Sohn YS; Nicovich JM; McKee ML; Wine PH J Phys Chem A; 2012 Jun; 116(24):6341-57. PubMed ID: 22435953 [TBL] [Abstract][Full Text] [Related]
12. Analysis of HO2 and OH formation mechanisms using FM and UV spectroscopy in dimethyl ether oxidation. Suzaki K; Tsuchiya K; Koshi M; Tezaki A J Phys Chem A; 2007 May; 111(19):3776-88. PubMed ID: 17455918 [TBL] [Abstract][Full Text] [Related]
13. Uncovering the fundamental chemistry of alkyl + O2 reactions via measurements of product formation. Taatjes CA J Phys Chem A; 2006 Apr; 110(13):4299-312. PubMed ID: 16571032 [TBL] [Abstract][Full Text] [Related]
14. Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions. Eskola AJ; Welz O; Savee JD; Osborn DL; Taatjes CA J Phys Chem A; 2013 Nov; 117(47):12216-35. PubMed ID: 24125058 [TBL] [Abstract][Full Text] [Related]
15. Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II. Sun H; Bozzelli JW; Law CK J Phys Chem A; 2007 Jun; 111(23):4974-86. PubMed ID: 17511431 [TBL] [Abstract][Full Text] [Related]
16. Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Rodriguez A; Frottier O; Herbinet O; Fournet R; Bounaceur R; Fittschen C; Battin-Leclerc F J Phys Chem A; 2015 Jul; 119(28):7905-23. PubMed ID: 25870904 [TBL] [Abstract][Full Text] [Related]
17. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel. Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B J Phys Chem A; 2011 Apr; 115(15):3366-79. PubMed ID: 21446707 [TBL] [Abstract][Full Text] [Related]
18. Mutual sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: experimental and detailed kinetic modeling study. Dagaut P; Dayma G J Phys Chem A; 2006 Jun; 110(21):6608-16. PubMed ID: 16722672 [TBL] [Abstract][Full Text] [Related]
19. A reinvestigation of the kinetics and the mechanism of the CH3C(O)O2 + HO2 reaction using both experimental and theoretical approaches. Le Crâne JP; Rayez MT; Rayez JC; Villenave E Phys Chem Chem Phys; 2006 May; 8(18):2163-71. PubMed ID: 16751874 [TBL] [Abstract][Full Text] [Related]