These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25946312)

  • 1. Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen.
    Holzer AK; Hiebler K; Mutti FG; Simon RC; Lauterbach L; Lenz O; Kroutil W
    Org Lett; 2015 May; 17(10):2431-3. PubMed ID: 25946312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Zor C; Reeve HA; Quinson J; Thompson LA; Lonsdale TH; Dillon F; Grobert N; Vincent KA
    Chem Commun (Camb); 2017 Aug; 53(71):9839-9841. PubMed ID: 28795176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
    Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W
    Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formal asymmetric biocatalytic reductive amination.
    Koszelewski D; Lavandera I; Clay D; Guebitz GM; Rozzell D; Kroutil W
    Angew Chem Int Ed Engl; 2008; 47(48):9337-40. PubMed ID: 18972473
    [No Abstract]   [Full Text] [Related]  

  • 5. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox self-sufficient biocatalyst network for the amination of primary alcohols.
    Sattler JH; Fuchs M; Tauber K; Mutti FG; Faber K; Pfeffer J; Haas T; Kroutil W
    Angew Chem Int Ed Engl; 2012 Sep; 51(36):9156-9. PubMed ID: 22887645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia.
    Qi F; Hu L; Lu S; Cao X; Gu H
    Chem Commun (Camb); 2012 Oct; 48(77):9631-3. PubMed ID: 22914578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of a robust and R-selective ω-amine transaminase for the asymmetric synthesis of sitagliptin intermediate on a kilogram scale.
    Cheng F; Chen XL; Li MY; Zhang XJ; Jia DX; Wang YJ; Liu ZQ; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109655. PubMed ID: 33051014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective organocatalytic reductive amination of aliphatic ketones by benzothiazoline as hydrogen donor.
    Saito K; Akiyama T
    Chem Commun (Camb); 2012 May; 48(38):4573-5. PubMed ID: 22499244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones].
    Cheng F; Li Q; Li H; Xue Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1794-1816. PubMed ID: 33164457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase.
    Tseliou V; Knaus T; Masman MF; Corrado ML; Mutti FG
    Nat Commun; 2019 Aug; 10(1):3717. PubMed ID: 31420547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective synthesis of amines via reductive amination with a dehydrogenase mutant from Exigobacterium sibiricum: Substrate scope, co-solvent tolerance and biocatalyst immobilization.
    Löwe J; Ingram AA; Gröger H
    Bioorg Med Chem; 2018 Apr; 26(7):1387-1392. PubMed ID: 29548785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scope of the organocatalysed asymmetric reductive amination of ketones with trichlorosilane.
    Gautier FM; Jones S; Li X; Martin SJ
    Org Biomol Chem; 2011 Oct; 9(22):7860-8. PubMed ID: 21960353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly enantioselective reductive amination of simple aryl ketones catalyzed by Ir-f-Binaphane in the presence of titanium(IV) isopropoxide and iodine.
    Chi Y; Zhou YG; Zhang X
    J Org Chem; 2003 May; 68(10):4120-2. PubMed ID: 12737606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable preformed chiral palladium catalysts for the one-pot asymmetric reductive amination of ketones.
    Rubio-Pérez L; Pérez-Flores FJ; Sharma P; Velasco L; Cabrera A
    Org Lett; 2009 Jan; 11(2):265-8. PubMed ID: 19093803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced axial chirality in biocatalytic asymmetric ketone reduction.
    Agudo R; Roiban GD; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1665-8. PubMed ID: 23075382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolically driven equilibrium shift of asymmetric amination of ketones by ω-transaminase using alanine as an amino donor.
    Han SW; Shin JS
    Biosci Biotechnol Biochem; 2014; 78(10):1788-90. PubMed ID: 25273146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.
    Garrabou X; Beck T; Hilvert D
    Angew Chem Int Ed Engl; 2015 May; 54(19):5609-12. PubMed ID: 25777153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic asymmetric amination of carbonyl functional groups - a synthetic biology approach to organic chemistry.
    Zhu D; Hua L
    Biotechnol J; 2009 Oct; 4(10):1420-31. PubMed ID: 19757497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.