These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25946413)

  • 1. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites.
    Soeta H; Fujisawa S; Saito T; Isogai A
    ACS Omega; 2020 Sep; 5(37):23755-23761. PubMed ID: 32984694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies.
    Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A
    Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly tough and transparent layered composites of nanocellulose and synthetic silicate.
    Wu CN; Yang Q; Takeuchi M; Saito T; Isogai A
    Nanoscale; 2014 Jan; 6(1):392-9. PubMed ID: 24201761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.
    Yang Q; Saito T; Berglund LA; Isogai A
    Nanoscale; 2015 Nov; 7(42):17957-63. PubMed ID: 26465589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.
    Shimizu M; Saito T; Fukuzumi H; Isogai A
    Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application.
    Pal N; Banerjee S; Roy P; Pal K
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Nanocellulose-Cellulose Triacetate Interfaces by Varying the Surface Grafting Density of Poly(ethylene glycol).
    Soeta H; Lo Re G; Masuda A; Fujisawa S; Saito T; Berglund LA; Isogai A
    ACS Omega; 2018 Sep; 3(9):11883-11889. PubMed ID: 31459274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide Nanofillers.
    Kim Y; Kim YT; Wang X; Min B; Park SI
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber.
    Choo K; Ching YC; Chuah CH; Julai S; Liou NS
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.