These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2594692)

  • 1. Microbial models of mammalian metabolism: stereoselective metabolism of warfarin in the fungus Cunninghamella elegans.
    Wong YW; Davis PJ
    Pharm Res; 1989 Nov; 6(11):982-7. PubMed ID: 2594692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial models of mammalian metabolism: production of 3'-hydroxywarfarin, a new metabolite of warfarin using Cunninghamella elegans.
    Wong YW; Davis PJ
    J Pharm Sci; 1991 Apr; 80(4):305-8. PubMed ID: 1865328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial models of mammalian metabolism: conversion of warfarin to 4'-hydroxywarfarin using Cunninghamella bainieri.
    Rizzo JD; Davis PJ
    J Pharm Sci; 1989 Mar; 78(3):183-9. PubMed ID: 2724074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin: stereochemical aspects of its metabolism in vivo in the rat.
    Pohl LR; Bales R; Trager WF
    Res Commun Chem Pathol Pharmacol; 1976 Oct; 15(2):233-56. PubMed ID: 981784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of warfarin and its metabolites by reversed-phase ion-pair liquid chromatography with fluorescence detection.
    Wong YW; Davis PJ
    J Chromatogr; 1989 May; 469():281-91. PubMed ID: 2768373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformations of warfarin: stereoselective reduction by Nocardia corallina and Arthrobacter species.
    Davis PJ; Rizzo JD
    Appl Environ Microbiol; 1982 Apr; 43(4):884-90. PubMed ID: 7081986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial models of mammalian metabolism. Biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata.
    Yang W; Davis PJ
    Drug Metab Dispos; 1992; 20(1):38-46. PubMed ID: 1346994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial models of mammalian metabolism: biotransformations of phenacetin and its O-alkyl homologues with Cunninghamella species.
    Reddy CS; Acosta D; Davis PJ
    Xenobiotica; 1990 Dec; 20(12):1281-97. PubMed ID: 2075748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel metabolites of warfarin produced by Beauveria bassiana and Streptomyces rimosus: a novel application of hplc-nmr.
    Cannell RJ; Rashid T; Ismail IM; Sidebottom PJ; Knaggs AR; Marshall PS
    Xenobiotica; 1997 Feb; 27(2):147-57. PubMed ID: 9058529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial models of mammalian metabolism. N-dealkylation of furosemide to yield the mammalian metabolite CSA using Cunninghamella elegans.
    Hezari M; Davis PJ
    Drug Metab Dispos; 1992; 20(6):882-8. PubMed ID: 1362941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of fluorene by the fungus Cunninghamella elegans.
    Pothuluri JV; Freeman JP; Evans FE; Cerniglia CE
    Appl Environ Microbiol; 1993 Jun; 59(6):1977-80. PubMed ID: 8328814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin.
    Kaminsky LS; Dunbar DA; Wang PP; Beaune P; Larrey D; Guengerich FP; Schnellmann RG; Sipes IG
    Drug Metab Dispos; 1984; 12(4):470-7. PubMed ID: 6148215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe.
    Kaminsky LS; de Morais SM; Faletto MB; Dunbar DA; Goldstein JA
    Mol Pharmacol; 1993 Feb; 43(2):234-9. PubMed ID: 8429826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics.
    Hermans JJ; Thijssen HH
    Br J Pharmacol; 1993 Sep; 110(1):482-90. PubMed ID: 8220911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal transformations of antihistamines: metabolism of cyproheptadine hydrochloride by Cunninghamella elegans.
    Zhang D; Hansen EB; Deck J; Heinze TM; Henderson A; Korfmacher WA; Cerniglia CE
    Xenobiotica; 1997 Mar; 27(3):301-15. PubMed ID: 9141237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of warfarin hydroxylation catalyzed by human liver microsomes.
    Rettie AE; Eddy AC; Heimark LD; Gibaldi M; Trager WF
    Drug Metab Dispos; 1989; 17(3):265-70. PubMed ID: 2568906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of tri-substituted methoxyamphetamines by Cunninghamella echinulata.
    Foster BC; McLeish J; Wilson DL; Whitehouse LW; Zamecnik J; Lodge BA
    Xenobiotica; 1992 Dec; 22(12):1383-94. PubMed ID: 1494884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biotransformation of retinoic acid by Cunninghamella echinulata and Cunninghamella blakesleeana.
    Hartman DA; Basil JB; Robertson LW; Curley RW
    Pharm Res; 1990 Mar; 7(3):270-3. PubMed ID: 2339101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warfarin metabolites: stereochemical aspects of protein binding and displacement by phenylbutazone.
    Chan E; McLachlan AJ; Rowland M
    Chirality; 1993; 5(8):610-5. PubMed ID: 8305289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of retinoid metabolism: microbial biotransformation of alpha-ionone and beta-ionone.
    Hartman DA; Pontones ME; Kloss VF; Curley RW; Robertson LW
    J Nat Prod; 1988; 51(5):947-53. PubMed ID: 3204383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.