These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 25947166)
1. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Noble J; Sanchez I; Blondin B Microb Cell Fact; 2015 May; 14():68. PubMed ID: 25947166 [TBL] [Abstract][Full Text] [Related]
2. MET2 affects production of hydrogen sulfide during wine fermentation. Huang C; Roncoroni M; Gardner RC Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of MET2 in brewer's yeast increases the level of sulfite in beer. Hansen J; Kielland-Brandt MC J Biotechnol; 1996 Sep; 50(1):75-87. PubMed ID: 8987848 [TBL] [Abstract][Full Text] [Related]
4. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. De Guidi I; Serre C; Noble J; Ortiz-Julien A; Blondin B; Legras JL FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38124683 [TBL] [Abstract][Full Text] [Related]
5. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685 [TBL] [Abstract][Full Text] [Related]
6. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. Cordente AG; Heinrich A; Pretorius IS; Swiegers JH FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation. Bartra E; Casado M; Carro D; Campamà C; Piña B J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614 [TBL] [Abstract][Full Text] [Related]
8. Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Cordente AG; Borneman AR; Bartel C; Capone D; Solomon M; Roach M; Curtin CD Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658969 [TBL] [Abstract][Full Text] [Related]
9. Varela C; Bartel C; Roach M; Borneman A; Curtin C Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183 [TBL] [Abstract][Full Text] [Related]
10. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Nadai C; Campanaro S; Giacomini A; Corich V Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600 [TBL] [Abstract][Full Text] [Related]
11. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Nadai C; Treu L; Campanaro S; Giacomini A; Corich V Appl Microbiol Biotechnol; 2016 Jan; 100(2):797-813. PubMed ID: 26615396 [TBL] [Abstract][Full Text] [Related]
12. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation. Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525 [TBL] [Abstract][Full Text] [Related]
13. Reduction of Sulfur Compounds through Genetic Improvement of Native Agarbati A; Canonico L; Comitini F; Ciani M Foods; 2020 May; 9(5):. PubMed ID: 32443690 [TBL] [Abstract][Full Text] [Related]
14. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae. Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605 [TBL] [Abstract][Full Text] [Related]
15. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. De Vero L; Solieri L; Giudici P Lett Appl Microbiol; 2011 Nov; 53(5):572-5. PubMed ID: 21883319 [TBL] [Abstract][Full Text] [Related]
16. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation. Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245 [TBL] [Abstract][Full Text] [Related]
17. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
18. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
19. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production]. Chen Y; Shen S; Wang Y; Xiao D Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535 [TBL] [Abstract][Full Text] [Related]
20. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Jiranek V; Langridge P; Henschke PA Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]