BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25947926)

  • 1. Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria.
    Takagaki A; Nanjo F
    Biol Pharm Bull; 2015; 38(5):789-94. PubMed ID: 25947926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin.
    Takagaki A; Kato Y; Nanjo F
    Arch Microbiol; 2014 Oct; 196(10):681-95. PubMed ID: 24947740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of (-)-epigallocatechin and (-)-gallocatechin by intestinal bacteria involved in isoflavone metabolism.
    Takagaki A; Nanjo F
    Biol Pharm Bull; 2015; 38(2):325-30. PubMed ID: 25747993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of catechin-converting human intestinal bacteria.
    Kutschera M; Engst W; Blaut M; Braune A
    J Appl Microbiol; 2011 Jul; 111(1):165-75. PubMed ID: 21457417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by intestinal bacteria involved in isoflavone metabolism.
    Takagaki A; Nanjo F
    Biosci Biotechnol Biochem; 2016; 80(1):199-202. PubMed ID: 26312950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (-)-epicatechin, followed by p-dehydroxylation of the B-ring.
    Jin JS; Hattori M
    Biol Pharm Bull; 2012; 35(12):2252-6. PubMed ID: 23207778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria.
    Meselhy MR; Nakamura N; Hattori M
    Chem Pharm Bull (Tokyo); 1997 May; 45(5):888-93. PubMed ID: 9178524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites.
    Wang L; Liu R; Yan F; Chen W; Zhang M; Lu Q; Huang B; Liu R
    Food Funct; 2024 Jan; 15(2):580-590. PubMed ID: 37927225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Interindividual Variability Associated with the Microbial Metabolism of (-)-Epicatechin.
    Lessard-Lord J; Roussel C; Guay V; Desjardins Y
    J Agric Food Chem; 2023 Sep; 71(37):13814-13827. PubMed ID: 37683128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory Activity of Catechin Metabolites Produced by Intestinal Microbiota on Proliferation of HeLa Cells.
    Hara-Terawaki A; Takagaki A; Kobayashi H; Nanjo F
    Biol Pharm Bull; 2017; 40(8):1331-1335. PubMed ID: 28769014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora.
    Takagaki A; Nanjo F
    J Agric Food Chem; 2010 Jan; 58(2):1313-21. PubMed ID: 20043675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.
    Wang LQ; Meselhy MR; Li Y; Nakamura N; Min BS; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2001 Dec; 49(12):1640-3. PubMed ID: 11767089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3.
    Noreljaleel AEM; Wilhelm A; Bonnet SL
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33126408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolism of (+)-catechin and (-)-epicatechin by rat intestinal microbiota.
    Takagaki A; Nanjo F
    J Agric Food Chem; 2013 May; 61(20):4927-35. PubMed ID: 23621128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota.
    Chen W; Zhu X; Lu Q; Zhang L; Wang X; Liu R
    Food Res Int; 2020 Sep; 135():109271. PubMed ID: 32527491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphenols in lahpet-so and two new catechin metabolites produced by anaerobic microbial fermentation of green tea.
    Shii T; Asada C; Matsuo Y; Saito Y; Tanaka T
    J Nat Med; 2014 Apr; 68(2):459-64. PubMed ID: 24458986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of 1-(3',4'-Dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol from Grape Seed Extract and Evaluation of its Antioxidant and Antispasmodic Potential.
    Gleńsk M; Hurst WJ; Glinski VB; Bednarski M; Gliński JA
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31277501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings.
    Borges G; Ottaviani JI; van der Hooft JJJ; Schroeter H; Crozier A
    Mol Aspects Med; 2018 Jun; 61():18-30. PubMed ID: 29126853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability.
    Lee MJ; Maliakal P; Chen L; Meng X; Bondoc FY; Prabhu S; Lambert G; Mohr S; Yang CS
    Cancer Epidemiol Biomarkers Prev; 2002 Oct; 11(10 Pt 1):1025-32. PubMed ID: 12376503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microbial metabolism of condensed (+)-catechins by rat-caecal microflora.
    Groenewoud G; Hundt HK
    Xenobiotica; 1986 Feb; 16(2):99-107. PubMed ID: 3962338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.