These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25948165)

  • 1. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.
    Sa B; Li YL; Sun Z; Qi J; Wen C; Wu B
    Nanotechnology; 2015 May; 26(21):215205. PubMed ID: 25948165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells.
    Dai J; Zeng XC
    J Phys Chem Lett; 2014 Apr; 5(7):1289-93. PubMed ID: 26274486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hittorf's violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization.
    Lu YL; Dong S; Zhou W; Dai S; Zhou B; Zhao H; Wu P
    Phys Chem Chem Phys; 2018 May; 20(17):11967-11975. PubMed ID: 29670965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural, elastic, electronic, and optical properties of the tricycle-like phosphorene.
    Zhang Y; Wu ZF; Gao PF; Fang DQ; Zhang EH; Zhang SL
    Phys Chem Chem Phys; 2017 Jan; 19(3):2245-2251. PubMed ID: 28054071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain.
    Manjanath A; Samanta A; Pandey T; Singh AK
    Nanotechnology; 2015 Feb; 26(7):075701. PubMed ID: 25609574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
    Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G
    Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorene oxide: stability and electronic properties of a novel two-dimensional material.
    Wang G; Pandey R; Karna SP
    Nanoscale; 2015 Jan; 7(2):524-31. PubMed ID: 25412501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric and electronic structures of mono- and di-vacancies in phosphorene.
    Hu T; Dong J
    Nanotechnology; 2015 Feb; 26(6):065705. PubMed ID: 25597897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CO monolayer: first-principles design of a new direct band-gap semiconductor with excellent mechanical properties.
    Teng ZW; Liu CS; Yan XH
    Nanoscale; 2017 May; 9(17):5445-5450. PubMed ID: 28177026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene.
    Wang V; Liu YC; Kawazoe Y; Geng WT
    J Phys Chem Lett; 2015 Dec; 6(24):4876-83. PubMed ID: 26582362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Out-of-plane structural flexibility of phosphorene.
    Wang G; Loh GC; Pandey R; Karna SP
    Nanotechnology; 2016 Feb; 27(5):055701. PubMed ID: 26671643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
    Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.
    Zhuang J; Liu C; Gao Q; Liu Y; Feng H; Xu X; Wang J; Zhao J; Dou SX; Hu Z; Du Y
    ACS Nano; 2018 May; 12(5):5059-5065. PubMed ID: 29741870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-gap tunability and dynamical instability in strained monolayer and bilayer phosphorenes.
    Huang GQ; Xing ZW
    J Phys Condens Matter; 2015 May; 27(17):175006. PubMed ID: 25835749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrous red phosphorene: a promising two-dimensional optoelectronic and photocatalytic material with a desirable band gap and high carrier mobility.
    Lu YL; Dong S; Li J; Wu Y; Wang L; Zhao H
    Phys Chem Chem Phys; 2020 Jun; 22(24):13713-13720. PubMed ID: 32525501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InTeI: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility.
    Jiang S; Li J; Chen W; Yin H; Zheng GP; Wang Y
    Nanoscale; 2020 Mar; 12(10):5888-5897. PubMed ID: 32104822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Ripple Deformation in Phosphorene.
    Kou L; Ma Y; Smith SC; Chen C
    J Phys Chem Lett; 2015 May; 6(9):1509-13. PubMed ID: 26263304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Matter Interactions in Phosphorene.
    Lu J; Yang J; Carvalho A; Liu H; Lu Y; Sow CH
    Acc Chem Res; 2016 Sep; 49(9):1806-15. PubMed ID: 27589013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.