BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2594838)

  • 1. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution of multicomponent fluorescence emission using frequency-dependent phase angle and modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Anal Chem; 1990 Sep; 62(18):2005-12. PubMed ID: 2240579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data.
    Gratton E; Limkeman M; Lakowicz JR; Maliwal BP; Cherek H; Laczko G
    Biophys J; 1984 Oct; 46(4):479-86. PubMed ID: 6498265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay.
    Xu J; Knutson JR
    J Phys Chem B; 2009 Sep; 113(35):12084-9. PubMed ID: 19708715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24).
    Ross JB; Rousslang KW; Brand L
    Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry.
    Lakowicz JR; Gratton E; Cherek H; Maliwal BP; Laczko G
    J Biol Chem; 1984 Sep; 259(17):10967-72. PubMed ID: 6469993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for resolution of two- and three-component mixtures of fluorophores by phase-sensitive detection of fluorescence.
    Keating-Nakamoto S; Cherek H; Lakowicz JR
    Anal Biochem; 1985 Aug; 148(2):349-56. PubMed ID: 4061815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of excited-state processes by phase-modulation fluorescence spectroscopy.
    Lakowicz JR; Balter A
    Biophys Chem; 1982 Oct; 16(2):117-32. PubMed ID: 7139044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved emission spectra of hemoglobin on the picosecond time scale.
    Bucci E; Malak H; Fronticelli C; Gryczynski I; Laczko G; Lakowicz JR
    Biophys Chem; 1988 Dec; 32(2-3):187-98. PubMed ID: 3251568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants.
    Royer CA
    Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence.
    Lakowicz JR; Cherek H
    J Biol Chem; 1980 Feb; 255(3):831-4. PubMed ID: 7356662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and performance of a variable-frequency phase-modulation fluorometer.
    Lakowicz JR; Maliwal BP
    Biophys Chem; 1985 Jan; 21(1):61-78. PubMed ID: 3971026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of multi-component fluorescence emission by phase-sensitive detection using one modulation frequency.
    Keating-Nakamoto SM; Cherek H; Lakowicz JR
    Biophys Chem; 1986 Jul; 24(2):79-95. PubMed ID: 17007798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for decay-associated fluorescence spectroscopy. Application to the tryptophan zwitterion.
    Privat JP; Wahl P; Brochon JC
    Biochimie; 1985 Sep; 67(9):949-58. PubMed ID: 4084611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc.
    Xu J; Toptygin D; Graver KJ; Albertini RA; Savtchenko RS; Meadow ND; Roseman S; Callis PR; Brand L; Knutson JR
    J Am Chem Soc; 2006 Feb; 128(4):1214-21. PubMed ID: 16433538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The light-induced reactions of tryptophan with halocompounds.
    Edwards RA; Jickling G; Turner RJ
    Photochem Photobiol; 2002 Apr; 75(4):362-8. PubMed ID: 12003125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data.
    Lakowicz JR; Laczko G; Cherek H; Gratton E; Limkeman M
    Biophys J; 1984 Oct; 46(4):463-77. PubMed ID: 6498264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.