These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25948810)

  • 1. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.
    Oates CN; Külheim C; Myburg AA; Slippers B; Naidoo S
    Plant Cell Physiol; 2015 Jul; 56(7):1418-28. PubMed ID: 25948810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terpenes associated with resistance against the gall wasp, Leptocybe invasa, in Eucalyptus grandis.
    Naidoo S; Christie N; Acosta JJ; Mphahlele MM; Payn KG; Myburg AA; Külheim C
    Plant Cell Environ; 2018 Aug; 41(8):1840-1851. PubMed ID: 29710389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Genome-Wide Association Study for Resistance to the Insect Pest Leptocybe invasa in Eucalyptus grandis Reveals Genomic Regions and Positional Candidate Defense Genes.
    Mhoswa L; O'Neill MM; Mphahlele MM; Oates CN; Payn KG; Slippers B; Myburg AA; Naidoo S
    Plant Cell Physiol; 2020 Jul; 61(7):1285-1296. PubMed ID: 32379870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Leptocybe invasa resistance in Eucalyptus: phenotyping, genotyping and in silico approaches.
    Calazans CC; Pereira GS; Souza JL; Nunes VV; Álvares-Carvalho SV; Dantas JO; Ribeiro GT; Silva-Mann R
    Braz J Biol; 2024; 84():e279850. PubMed ID: 38896727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect egg-induced physiological changes and transcriptional reprogramming leading to gall formation.
    Oates CN; Denby KJ; Myburg AA; Slippers B; Naidoo S
    Plant Cell Environ; 2021 Feb; 44(2):535-547. PubMed ID: 33125164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential development times of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) reveal differences in susceptibility between two Eucalyptus clones.
    Sarmento MI; Pinto G; Araújo WL; Silva RC; Lima CHO; Soares AM; Sarmento RA
    Pest Manag Sci; 2021 Feb; 77(2):1042-1051. PubMed ID: 33001575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference genes for Eucalyptus spp. under Beauveria bassiana inoculation and subsequently infestation by the galling wasp Leptocybe invasa.
    Daude MM; Ságio SA; Rodrigues JN; Lima NMP; Lima AA; Sarmento MI; Sarmento RA; Barreto HG
    Sci Rep; 2024 Jan; 14(1):2556. PubMed ID: 38297150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell death and changes in primary metabolism: the onset of defence in Eucalyptus in the war against Leptocybe invasa.
    de Oliveira Pinto I; Sarmento MI; Martins AO; Rocha JPL; Pinto G; Araújo WL; Soares AM; Sarmento RA
    Pest Manag Sci; 2022 Apr; 78(4):1721-1728. PubMed ID: 34997819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive Biology of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae).
    Zheng XL; Huang ZY; Li J; Yang ZD; Yang XH; Lu W
    Neotrop Entomol; 2018 Feb; 47(1):19-25. PubMed ID: 28293863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree.
    Rocha S; Branco M; Boas LV; Almeida MH; Protasov A; Mendel Z
    Tree Physiol; 2013 Apr; 33(4):388-97. PubMed ID: 23513035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasitoids of the eucalyptus gall wasp Leptocybe spp.: a global review.
    Huang ZY; Li J; Lu W; Zheng XL; Yang ZD
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):29983-29995. PubMed ID: 30178405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association study identifies SNP markers and putative candidate genes for terpene traits important for Leptocybe invasa resistance in Eucalyptus grandis.
    Mhoswa L; Myburg AA; Slippers B; Külheim C; Naidoo S
    G3 (Bethesda); 2022 Apr; 12(4):. PubMed ID: 35134191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parasitoids of the eucalyptus gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) in China.
    Zheng XL; Huang ZY; Dong D; Guo CH; Li J; Yang ZD; Yang XH; Lu W
    Parasite; 2016; 23():58. PubMed ID: 28000590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges.
    Tobias PA; Christie N; Naidoo S; Guest DI; Külheim C
    Tree Physiol; 2017 May; 37(5):565-582. PubMed ID: 28338992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of Eucalyptus grandis genotypes reveals constitutive overexpression of genes related to rust (Austropuccinia psidii) resistance.
    Santos SA; Vidigal PMP; Guimarães LMS; Mafia RG; Templeton MD; Alfenas AC
    Plant Mol Biol; 2020 Nov; 104(4-5):339-357. PubMed ID: 32638297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome and hormone profiling reveals Eucalyptus grandis defence responses against Chrysoporthe austroafricana.
    Mangwanda R; Myburg AA; Naidoo S
    BMC Genomics; 2015 Apr; 16(1):319. PubMed ID: 25903559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of current and future potential distributions of the Eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model.
    Huang M; Ge X; Shi H; Tong Y; Shi J
    Pest Manag Sci; 2019 Nov; 75(11):2958-2968. PubMed ID: 30868710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age.
    Naidoo S; Külheim C; Zwart L; Mangwanda R; Oates CN; Visser EA; Wilken FE; Mamni TB; Myburg AA
    Tree Physiol; 2014 Sep; 34(9):931-43. PubMed ID: 25261123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage.
    Broekgaarden C; Pelgrom KTB; Bucher J; van Dam NM; Grosser K; Pieterse CMJ; van Kaauwen M; Steenhuis G; Voorrips RE; de Vos M; Vosman B; Worrich A; van Wees SCM
    PLoS One; 2018; 13(11):e0206103. PubMed ID: 30399182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.