These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25950013)

  • 1. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles.
    Nedev S; Carretero-Palacios S; Kühler P; Lohmüller T; Urban AS; Anderson LJ; Feldmann J
    ACS Photonics; 2015 Apr; 2(4):491-496. PubMed ID: 25950013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of microparticles with two tilted-focused laser beams.
    Meng C; Shao M; Zhang XF; Zhang LS; Chen D; Zhong MC
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37409910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping metallic particles using focused Bloch surface waves.
    Xiang Y; Tang X; Fu Y; Lu F; Kuai Y; Min C; Chen J; Wang P; Lakowicz JR; Yuan X; Zhang D
    Nanoscale; 2020 Jan; 12(3):1688-1696. PubMed ID: 31894803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles.
    Pope BL; Zhang M; Jo S; Dragnea B; Jacobson SC
    Anal Chem; 2024 Jul; ():. PubMed ID: 38976499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
    Merenda F; Boer G; Rohner J; Delacrétaz G; Salathé RP
    Opt Express; 2006 Feb; 14(4):1685-99. PubMed ID: 19503495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically Driven Janus Microengine with Full Orbital Motion Control.
    Bronte Ciriza D; Callegari A; Donato MG; Çiçek B; Magazzù A; Kasianiuk I; Kasyanyuk D; Schmidt F; Foti A; Gucciardi PG; Volpe G; Lanza M; Biancofiore L; Maragò OM
    ACS Photonics; 2023 Sep; 10(9):3223-3232. PubMed ID: 37743937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion of Optically Heated Spheres at the Water-Air Interface.
    Girot A; Danné N; Würger A; Bickel T; Ren F; Loudet JC; Pouligny B
    Langmuir; 2016 Mar; 32(11):2687-97. PubMed ID: 26916053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping metallic Rayleigh particles with radial polarization.
    Zhan Q
    Opt Express; 2004 Jul; 12(15):3377-82. PubMed ID: 19483862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Optical and Chemical Control of a Microsized Photofueled Janus Particle.
    Simoncelli S; Summer J; Nedev S; Kühler P; Feldmann J
    Small; 2016 Jun; 12(21):2854-8. PubMed ID: 27028413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Plasmonic Spanner for Metal Particle Manipulation.
    Zhang Y; Shi W; Shen Z; Man Z; Min C; Shen J; Zhu S; Urbach HP; Yuan X
    Sci Rep; 2015 Oct; 5():15446. PubMed ID: 26481689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused plasmonic trapping of metallic particles.
    Min C; Shen Z; Shen J; Zhang Y; Fang H; Yuan G; Du L; Zhu S; Lei T; Yuan X
    Nat Commun; 2013; 4():2891. PubMed ID: 24305554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.
    Jiang HR; Yoshinaga N; Sano M
    Phys Rev Lett; 2010 Dec; 105(26):268302. PubMed ID: 21231718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.