BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25950496)

  • 1. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles.
    Morini MA; Sierra MB; Pedroni VI; Alarcon LM; Appignanesi GA; Disalvo EA
    Colloids Surf B Biointerfaces; 2015 Jul; 131():54-8. PubMed ID: 25950496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures.
    Sierra MB; Pedroni VI; Buffo FE; Disalvo EA; Morini MA
    Colloids Surf B Biointerfaces; 2016 Jun; 142():199-206. PubMed ID: 26954086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data.
    Makino K; Yamada T; Kimura M; Oka T; Ohshima H; Kondo T
    Biophys Chem; 1991 Nov; 41(2):175-83. PubMed ID: 1773010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of the interaction of arginine with phosphatidylcholine and phosphatidylethanolamine bilayers.
    Herrera FE; Bouchet A; Lairion F; Disalvo EA; Pantano S
    J Phys Chem B; 2012 Apr; 116(15):4476-83. PubMed ID: 22448899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus-31 two-dimensional solid-state exchange NMR. Application to model membrane and biological systems.
    Fenske DB; Jarrell HC
    Biophys J; 1991 Jan; 59(1):55-69. PubMed ID: 2015390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase.
    Mason PC; Nagle JF; Epand RM; Katsaras J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):030902. PubMed ID: 11308623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes.
    Smejtek P; Barstad AW; Wang S
    Chem Biol Interact; 1989; 71(1):37-61. PubMed ID: 2776233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes.
    John K; Schreiber S; Kubelt J; Herrmann A; Müller P
    Biophys J; 2002 Dec; 83(6):3315-23. PubMed ID: 12496099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles.
    Wacklin HP; Thomas RK
    Langmuir; 2007 Jul; 23(14):7644-51. PubMed ID: 17539662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal acoustic radiation from multilamellar vesicles in lipid phase transition.
    Anosov AA; Barabanenkov YN; Kazanskij AS; Less YA; Sharakshane AS
    Chem Phys Lipids; 2008 Jun; 153(2):81-4. PubMed ID: 18381070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature.
    Toraya S; Nagao T; Norisada K; Tuzi S; Saitô H; Izumi S; Naito A
    Biophys J; 2005 Nov; 89(5):3214-22. PubMed ID: 16113109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase A(2) activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC.
    Høyrup P; Mouritsen OG; Jørgensen K
    Biochim Biophys Acta; 2001 Dec; 1515(2):133-43. PubMed ID: 11718669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.
    Ge M; Freed JH
    Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide.
    Yokoyama S; Inagaki A; Imura T; Ohkubo T; Tsubaki N; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):204-10. PubMed ID: 16087320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Partitioning of C152 in Binary Phosphatidylcholine Membranes and Mixed Phosphatidylcholine/Phosphatidylethanolamine Membranes.
    Gobrogge CA; Kong VA; Walker RA
    J Phys Chem B; 2017 Aug; 121(33):7889-7898. PubMed ID: 28726411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Partitioning of Coumarin 152 in Phosphatidylcholine Lipid Bilayers.
    Gobrogge CA; Blanchard HS; Walker RA
    J Phys Chem B; 2017 Apr; 121(16):4061-4070. PubMed ID: 28350163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: contribution of hydration and confined water.
    Almaleck H; Gordillo GJ; Disalvo A
    Colloids Surf B Biointerfaces; 2013 Feb; 102():871-8. PubMed ID: 23104041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.