These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25950496)

  • 61. Self-assembly of a peptide amphiphile containing L-carnosine and its mixtures with a multilamellar vesicle forming lipid.
    Castelletto V; Cheng G; Stain C; Connon CJ; Hamley IW
    Langmuir; 2012 Aug; 28(31):11599-608. PubMed ID: 22788380
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Observation of complex thermal transitions for mixed micelle solutions containing alkyldimethylphosphine oxides and phospholipids and the accompanying cloud points.
    Kresheck GC; Mihelich J
    Chem Phys Lipids; 2003 Mar; 123(1):45-62. PubMed ID: 12637164
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of headgroup on the dipole potential of phospholipid vesicles.
    Starke-Peterkovic T; Clarke RJ
    Eur Biophys J; 2009 Dec; 39(1):103-10. PubMed ID: 19132364
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant Triton X-100.
    Schnitzer E; Kozlov MM; Lichtenberg D
    Chem Phys Lipids; 2005 May; 135(1):69-82. PubMed ID: 15854626
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phase behavior and dynamic heterogeneities in lipids: a coarse-grained simulation study of DPPC-DPPE mixtures.
    Wong BY; Faller R
    Biochim Biophys Acta; 2007 Mar; 1768(3):620-7. PubMed ID: 17239815
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy.
    Hübner W; Mantsch HH
    Biophys J; 1991 Jun; 59(6):1261-72. PubMed ID: 1873463
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes.
    Tatulian SA
    Biochim Biophys Acta; 1983 Dec; 736(2):189-95. PubMed ID: 6652082
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of dipole potential variations on the surface charge potential of lipid membranes.
    Lairion F; Disalvo EA
    J Phys Chem B; 2009 Feb; 113(6):1607-14. PubMed ID: 19193165
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fluorescence study of the effect of cholesterol on spectrin-aminophospholipid interactions.
    Mitra M; Patra M; Chakrabarti A
    Eur Biophys J; 2015 Dec; 44(8):635-45. PubMed ID: 26184723
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part II: modeling the perpendicular and lateral equation-of-state.
    Leontidis E; Aroti A; Belloni L; Dubois M; Zemb T
    Biophys J; 2007 Sep; 93(5):1591-607. PubMed ID: 17496050
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The formation of multilamellar vesicles from saturated phosphatidylcholines and phosphatidylethanolamines: morphology and quasi-elastic light scattering measurements.
    Singer MA; Finegold L; Rochon P; Racey TJ
    Chem Phys Lipids; 1990 May; 54(2):131-46. PubMed ID: 2364473
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phospholipid reorientation at the lipid/water interface measured by high resolution 31P field cycling NMR spectroscopy.
    Roberts MF; Redfield AG; Mohanty U
    Biophys J; 2009 Jul; 97(1):132-41. PubMed ID: 19580751
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus.
    Wong JY; Park CK; Seitz M; Israelachvili J
    Biophys J; 1999 Sep; 77(3):1458-68. PubMed ID: 10465756
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of bacteriohopane-32-ol on the stability of various kinds of liposomal membranes.
    Chen Z; Tanno N; Takenaka S; Suzuki Y
    Biol Pharm Bull; 1995 Apr; 18(4):600-4. PubMed ID: 7655435
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular dynamics simulations of the lipid bilayer edge.
    Jiang FY; Bouret Y; Kindt JT
    Biophys J; 2004 Jul; 87(1):182-92. PubMed ID: 15240456
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded gramicidin A.
    Davis JE; Patel S
    J Phys Chem B; 2009 Jul; 113(27):9183-96. PubMed ID: 19526999
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Closer look at the calorimetric lower transition in lipid bilayers.
    Korono SA; Nagle JF
    Chem Phys Lipids; 2024 Mar; 259():105366. PubMed ID: 38081501
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Micromanipulation of phospholipid bilayers by atomic force microscopy.
    Maeda N; Senden TJ; di Meglio JM
    Biochim Biophys Acta; 2002 Aug; 1564(1):165-72. PubMed ID: 12101009
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state.
    Antonov VF; Anosov AA; Norik VP; Smirnova EY
    Eur Biophys J; 2005 Mar; 34(2):155-62. PubMed ID: 15480622
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of arbutin on the dipole potential and area per lipid of ester and ether phosphatidylcholine and phosphatidyl ethanolamine monolayers.
    Lairion F; Disalvo EA
    Biochim Biophys Acta; 2007 Mar; 1768(3):450-6. PubMed ID: 17257579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.