BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25950498)

  • 21. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case.
    Preta G; Jankunec M; Heinrich F; Griffin S; Sheldon IM; Valincius G
    Biochim Biophys Acta; 2016 Sep; 1858(9):2070-2080. PubMed ID: 27211243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Cholesterol on the Dielectric Structure of Lipid Bilayers.
    Alobeedallah H; Cornell B; Coster H
    J Membr Biol; 2018 Feb; 251(1):153-161. PubMed ID: 29188314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles.
    Li H; Xu B; Wang D; Zhou Y; Zhang H; Xia W; Xu S; Li Y
    J Biotechnol; 2015 Jun; 203():97-103. PubMed ID: 25840366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The assembly and use of tethered bilayer lipid membranes (tBLMs).
    Cranfield C; Carne S; Martinac B; Cornell B
    Methods Mol Biol; 2015; 1232():45-53. PubMed ID: 25331126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective electroless deposition of metal clusters on solid-supported bacteriorhodopsin: applications to orientation labeling and electrical contacts.
    Ron I; Friedman N; Cahen D; Sheves M
    Small; 2008 Dec; 4(12):2271-8. PubMed ID: 19016493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High impedance droplet-solid interface lipid bilayer membranes.
    Wang X; Ma S; Su Y; Zhang Y; Bi H; Zhang L; Han X
    Anal Chem; 2015 Feb; 87(4):2094-9. PubMed ID: 25600185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The protein-tethered lipid bilayer: a novel mimic of the biological membrane.
    Giess F; Friedrich MG; Heberle J; Naumann RL; Knoll W
    Biophys J; 2004 Nov; 87(5):3213-20. PubMed ID: 15339795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.
    Gopinath V; MubarakAli D; Priyadarshini S; Priyadharsshini NM; Thajuddin N; Velusamy P
    Colloids Surf B Biointerfaces; 2012 Aug; 96():69-74. PubMed ID: 22521683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural analysis of tethered bilayer lipid membranes.
    Junghans A; Köper I
    Langmuir; 2010 Jul; 26(13):11035-40. PubMed ID: 20504013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.
    Bo Z; Avsar SY; Corliss MK; Chung M; Cho NJ
    J Hazard Mater; 2017 Oct; 339():264-273. PubMed ID: 28654791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical impedance spectroscopy as a method for electrical characterization of the bilayers formed from lipid-amino acid systems.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Chem Phys Lipids; 2013; 175-176():116-22. PubMed ID: 24055996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interaction of lipid-liganded gold clusters (Aurora
    Sot J; Mendanha-Neto SA; Busto JV; García-Arribas AB; Li S; Burgess SW; Shaw WA; Gil-Carton D; Goñi FM; Alonso A
    Chem Phys Lipids; 2019 Jan; 218():40-46. PubMed ID: 30502315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.
    Kumar A; Singhal A
    Nanotechnology; 2009 Jul; 20(29):295606. PubMed ID: 19567956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method.
    Reicha FM; Sarhan A; Abdel-Hamid MI; El-Sherbiny IM
    Carbohydr Polym; 2012 Jun; 89(1):236-44. PubMed ID: 24750629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The use of nanoparticles for the study of conformations submembrane hemoglobin].
    Maksimov GV; Brazhe NA; Iusipovich AI; Parshina EIu; Rodnenkov OV; Rubin AB; Levin GG; Bykov VA
    Biofizika; 2011; 56(6):1099-104. PubMed ID: 22279754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.
    Liu Y; Zhang Z; Zhang Q; Baker GL; Worden RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):429-37. PubMed ID: 24060565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.
    Morga M; Adamczyk Z; Oćwieja M; Bielańska E
    J Colloid Interface Sci; 2014 Jun; 424():75-83. PubMed ID: 24767501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent.
    Dastafkan K; Khajeh M; Bohlooli M; Ghaffari-Moghaddam M; Sheibani N
    Talanta; 2015 Nov; 144():1377-86. PubMed ID: 26452972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.