BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25950921)

  • 1. Mobility of indaziflam influenced by soil properties in a semi-arid area.
    González-Delgado AM; Ashigh J; Shukla MK; Perkins R
    PLoS One; 2015; 10(5):e0126100. PubMed ID: 25950921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of application rate and irrigation on the movement and dissipation of indaziflam.
    González-Delgado AM; Shukla MK; Ashigh J; Perkins R
    J Environ Sci (China); 2017 Jan; 51():111-119. PubMed ID: 28115120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption-desorption of indaziflam in selected agricultural soils.
    Alonso DG; Koskinen WC; Oliveira RS; Constantin J; Mislankar S
    J Agric Food Chem; 2011 Dec; 59(24):13096-101. PubMed ID: 22070170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on Kochia scoparia L.
    Sebastian DJ; Nissen SJ; Westra P; Shaner DL; Butters G
    Pest Manag Sci; 2017 Feb; 73(2):444-451. PubMed ID: 27108479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine.
    Trigo C; Spokas KA; Cox L; Koskinen WC
    J Agric Food Chem; 2014 Nov; 62(45):10855-60. PubMed ID: 25338136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of indaziflam applied at two rates under different rainfall situations in Florida Candler soil.
    Jhala AJ; Ramirez AH; Singh M
    Bull Environ Contam Toxicol; 2012 Mar; 88(3):326-32. PubMed ID: 22218748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cow bonechar decreases indaziflam pre-emergence herbicidal activity in tropical soil.
    Mendes KF; Furtado IF; Sousa RN; Lima ADC; Mielke KC; Brochado MGDS
    J Environ Sci Health B; 2021; 56(6):532-539. PubMed ID: 33950786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method Development and Validation of Indaziflam and Its Five Metabolites in Soil, Water, and Fruits by Modified QuEChERS and UHPLC-MS/MS.
    Hu M; Qiu J; Zhang H; Fan X; Liu K; Zeng D; Tan H
    J Agric Food Chem; 2018 Oct; 66(39):10300-10308. PubMed ID: 30212200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indaziflam: Control Effectiveness in Monocotyledonous and Eudicotyledonous Weeds as a Function of Herbicide Dose and Soil Texture.
    Vinicius da Silva P; Rodrigues Milagres Viana H; Rafael Malardo M; Coura Oliveira M; de Carvalho Dias R; Maris Ináci E; Andrea Monquero P; Jacob Christoffoleti P
    Pak J Biol Sci; 2021 Jan; 24(11):1119-1129. PubMed ID: 34842383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indaziflam: a new cellulose-biosynthesis-inhibiting herbicide provides long-term control of invasive winter annual grasses.
    Sebastian DJ; Fleming MB; Patterson EL; Sebastian JR; Nissen SJ
    Pest Manag Sci; 2017 Oct; 73(10):2149-2162. PubMed ID: 28436172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indaziflam herbicidal action: a potent cellulose biosynthesis inhibitor.
    Brabham C; Lei L; Gu Y; Stork J; Barrett M; DeBolt S
    Plant Physiol; 2014 Nov; 166(3):1177-85. PubMed ID: 25077797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption-desorption of indaziflam and its three metabolites in sandy soils.
    Trigo C; Koskinen WC; Kookana RS
    J Environ Sci Health B; 2014; 49(11):836-43. PubMed ID: 25190558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annual bluegrass (Poa annua) resistance to indaziflam applied early-postemergence.
    Brosnan JT; Vargas JJ; Spesard B; Netzband D; Zobel JM; Chen J; Patterson EL
    Pest Manag Sci; 2020 Jun; 76(6):2049-2057. PubMed ID: 31943704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico.
    Sáenz-Hidalgo HK; Jacobo-Cuellar JL; Zúñiga-Rodríguez E; Avila-Quezada GD; Olalde-Portugal V; Hashem A; Abd Allah EF
    J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile.
    Pot V; Benoit P; Le Menn M; Eklo OM; Sveistrup T; Kvaerner J
    Pest Manag Sci; 2011 Apr; 67(4):397-407. PubMed ID: 21394872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced downward mobility of metribuzin in fly ash-amended soils.
    Singh N; Raunaq ; Singh SB
    J Environ Sci Health B; 2013; 48(7):587-92. PubMed ID: 23581692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexazinone and simazine dissipation in forestry field nurseries.
    Calderón MJ; Ortega M; Hermosín MC; García-Baudín J; Cornejo J
    Chemosphere; 2004 Jan; 54(1):1-8. PubMed ID: 14559252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of atrazine in a soil under different agronomic management practices.
    Prado B; Fuentes M; Verhulst N; Govaerts B; De León F; Zamora O
    J Environ Sci Health B; 2014; 49(11):844-55. PubMed ID: 25190559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil.
    Fenoll J; Vela N; Navarro G; Pérez-Lucas G; Navarro S
    Sci Total Environ; 2014 Sep; 493():124-32. PubMed ID: 24937498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops.
    Mamy L; Barriuso E
    Chemosphere; 2005 Nov; 61(6):844-55. PubMed ID: 15951002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.