These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25950980)

  • 1. Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
    Madej MG
    Methods Enzymol; 2015; 557():521-49. PubMed ID: 25950980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary mix-and-match with MFS transporters II.
    Madej MG; Kaback HR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4831-8. PubMed ID: 24259711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of the lactose permease of Escherichia coli.
    Abramson J; Smirnova I; Kasho V; Verner G; Kaback HR; Iwata S
    Science; 2003 Aug; 301(5633):610-5. PubMed ID: 12893935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the E. coli peptide transporter YbgH.
    Zhao Y; Mao G; Liu M; Zhang L; Wang X; Zhang XC
    Structure; 2014 Aug; 22(8):1152-1160. PubMed ID: 25066136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of the lactose permease.
    Kaback HR
    C R Biol; 2005 Jun; 328(6):557-67. PubMed ID: 15950162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary mix-and-match with MFS transporters.
    Madej MG; Dang S; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5870-4. PubMed ID: 23530251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.
    Huang Y; Lemieux MJ; Song J; Auer M; Wang DN
    Science; 2003 Aug; 301(5633):616-20. PubMed ID: 12893936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.
    Wood JM; Culham DE; Hillar A; Vernikovska YI; Liu F; Boggs JM; Keates RA
    Biochemistry; 2005 Apr; 44(15):5634-46. PubMed ID: 15823022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A.
    Jiang D; Zhao Y; Wang X; Fan J; Heng J; Liu X; Feng W; Kang X; Huang B; Liu J; Zhang XC
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14664-9. PubMed ID: 23950222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA.
    Sigal N; Molshanski-Mor S; Bibi E
    J Bacteriol; 2006 Aug; 188(15):5635-9. PubMed ID: 16855255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands.
    Patching SG; Baldwin SA; Baldwin AD; Young JD; Gallagher MP; Henderson PJ; Herbert RB
    Org Biomol Chem; 2005 Feb; 3(3):462-70. PubMed ID: 15678184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes.
    Zhang W; Guan L; Kaback HR
    J Mol Biol; 2002 Jan; 315(1):53-62. PubMed ID: 11771965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural biology. Breaching the barrier.
    Locher KP; Bass RB; Rees DC
    Science; 2003 Aug; 301(5633):603-4. PubMed ID: 12893929
    [No Abstract]   [Full Text] [Related]  

  • 20. 3D model of the Escherichia coli multidrug transporter MdfA reveals an essential membrane-embedded positive charge.
    Sigal N; Vardy E; Molshanski-Mor S; Eitan A; Pilpel Y; Schuldiner S; Bibi E
    Biochemistry; 2005 Nov; 44(45):14870-80. PubMed ID: 16274234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.