These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25951085)
1. An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Wang Q; Fang J; Cao D; Li H; Su K; Hu N; Wang P Biosens Bioelectron; 2015 Oct; 72():10-7. PubMed ID: 25951085 [TBL] [Abstract][Full Text] [Related]
2. Detection of marine toxins, brevetoxin-3 and saxitoxin, in seawater using neuronal networks. Kulagina NV; Mikulski CM; Gray S; Ma W; Doucette GJ; Ramsdell JS; Pancrazio JJ Environ Sci Technol; 2006 Jan; 40(2):578-83. PubMed ID: 16468405 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological effects of the marine toxins, brevetoxin and saxitoxin, on murine frontal cortex neuronal networks. Kulagina NV; O'shaughnessy TJ; Ma W; Ramsdell JS; Pancrazio JJ Toxicon; 2004 Nov; 44(6):669-76. PubMed ID: 15501293 [TBL] [Abstract][Full Text] [Related]
4. High-performance and -efficiency cardiomyocyte-based potential biosensor for temporal-specific detection of ion channel marine toxins. Sun X; Xiang Y; Liu M; Xu X; Zhang L; Zhuang L; Wang P; Wang Q Biosens Bioelectron; 2023 Jan; 220():114837. PubMed ID: 36335708 [TBL] [Abstract][Full Text] [Related]
5. A Dual Functional Cardiomyocyte-based Hybrid-biosensor for the Detection of Diarrhetic Shellfish Poisoning and Paralytic Shellfish Poisoning Toxins. Li H; Wei X; Gu C; Su K; Wan H; Hu N; Wang P Anal Sci; 2018; 34(8):893-900. PubMed ID: 30101883 [TBL] [Abstract][Full Text] [Related]
6. Comparison of during-bloom and inter-bloom brevetoxin and saxitoxin concentrations in Indian River Lagoon bottlenose dolphins, 2002-2011. Fire SE; Browning JA; Durden WN; Stolen MK Aquat Toxicol; 2020 Jan; 218():105371. PubMed ID: 31790939 [TBL] [Abstract][Full Text] [Related]
7. Algal toxins and reverse osmosis desalination operations: laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid. Seubert EL; Trussell S; Eagleton J; Schnetzer A; Cetinić I; Lauri P; Jones BH; Caron DA Water Res; 2012 Dec; 46(19):6563-73. PubMed ID: 23079130 [TBL] [Abstract][Full Text] [Related]
8. A rapid assay for the brevetoxin group of sodium channel activators based on fluorescence monitoring of synaptoneurosomal membrane potential. David LS; Plakas SM; El Said KR; Jester EL; Dickey RW; Nicholson RA Toxicon; 2003 Aug; 42(2):191-8. PubMed ID: 12906890 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the Neuroblastoma Cell-Based Assay (CBA-N2a) for the Improved Detection of Marine Toxins Active on Voltage Gated Sodium Channels (VGSCs). Viallon J; Chinain M; Darius HT Toxins (Basel); 2020 Apr; 12(5):. PubMed ID: 32349302 [TBL] [Abstract][Full Text] [Related]
10. Brevetoxin metabolism and elimination in the Eastern oyster (Crassostrea virginica) after controlled exposures to Karenia brevis. Plakas SM; Wang Z; El Said KR; Jester EL; Granade HR; Flewelling L; Scott P; Dickey RW Toxicon; 2004 Nov; 44(6):677-85. PubMed ID: 15501294 [TBL] [Abstract][Full Text] [Related]
11. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Manger RL; Leja LS; Lee SY; Hungerford JM; Wekell MM Anal Biochem; 1993 Oct; 214(1):190-4. PubMed ID: 8250223 [TBL] [Abstract][Full Text] [Related]
12. Fate and distribution of brevetoxin (PbTx) following lysis of Karenia brevis by algicidal bacteria, including analysis of open A-ring derivatives. Roth PB; Twiner MJ; Wang Z; Bottein Dechraoui MY; Doucette GJ Toxicon; 2007 Dec; 50(8):1175-91. PubMed ID: 17905402 [TBL] [Abstract][Full Text] [Related]
13. Respiratory effects of brevetoxin and saxitoxin in awake guinea pigs. Franz DR; LeClaire RD Toxicon; 1989; 27(6):647-54. PubMed ID: 2546295 [TBL] [Abstract][Full Text] [Related]
14. Brevetoxin-3 (PbTx-3) and its derivatives modulate single tetrodotoxin-sensitive sodium channels in rat sensory neurons. Jeglitsch G; Rein K; Baden DG; Adams DJ J Pharmacol Exp Ther; 1998 Feb; 284(2):516-25. PubMed ID: 9454792 [TBL] [Abstract][Full Text] [Related]
15. A neurophysiological method of rapid detection and analysis of marine algal toxins. Kerr DS; Briggs DM; Saba HI Toxicon; 1999 Dec; 37(12):1803-25. PubMed ID: 10519657 [TBL] [Abstract][Full Text] [Related]
16. Extraction and analysis of lipophilic brevetoxins from the red tide dinoflagellate Karenia brevis. Twiner MJ; Bottein Dechraoui MY; Wang Z; Mikulski CM; Henry MS; Pierce RH; Doucette GJ Anal Biochem; 2007 Oct; 369(1):128-35. PubMed ID: 17662954 [TBL] [Abstract][Full Text] [Related]
17. Use of sodium transfer tissue biosensor (STTB) for monitoring of marine toxic organism. Yoo JS; Cheun BS; Park IS; Song YC; Seo Y; Kim NG; Shin HW; Lee JH J Environ Biol; 2004 Oct; 25(4):431-6. PubMed ID: 15907072 [TBL] [Abstract][Full Text] [Related]
18. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Eissa S; Siaj M; Zourob M Biosens Bioelectron; 2015 Jul; 69():148-54. PubMed ID: 25725463 [TBL] [Abstract][Full Text] [Related]
19. Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Poli MA; Mende TJ; Baden DG Mol Pharmacol; 1986 Aug; 30(2):129-35. PubMed ID: 2426567 [TBL] [Abstract][Full Text] [Related]
20. Optimization of blood collection card method/enzyme-linked immunoassay for monitoring exposure of bottlenose dolphin to brevetoxin-producing red tides. Maucher JM; Briggs L; Podmore C; Ramsdell JS Environ Sci Technol; 2007 Jan; 41(2):563-7. PubMed ID: 17310722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]