These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25951233)

  • 1. From Graphene to Carbon Nanotubes: Variation of the Electronic States and Nonlinear Optical Responses.
    Hu YY; Gu J; Li WQ; Yang L; Feng JK; Tian WQ
    Chemphyschem; 2015 Jul; 16(10):2151-8. PubMed ID: 25951233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the edge states in X-type carbon based molecules for applications in nonlinear optics.
    Yang CC; Zheng XL; Tian WQ; Li WQ; Yang L
    Phys Chem Chem Phys; 2022 Mar; 24(13):7713-7722. PubMed ID: 34909807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structures and optical properties of partially and fully fluorinated graphene.
    Yuan S; Rösner M; Schulz A; Wehling TO; Katsnelson MI
    Phys Rev Lett; 2015 Jan; 114(4):047403. PubMed ID: 25679908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials.
    Muhammad S; Nakano M; Al-Sehemi AG; Kitagawa Y; Irfan A; Chaudhry AR; Kishi R; Ito S; Yoneda K; Fukuda K
    Nanoscale; 2016 Oct; 8(42):17998-18020. PubMed ID: 27722408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of the influence of impurities on the structural, electronic, optoelectronic, and nonlinear optical properties of graphene nanosheet functionalized by the carboxyl group -COOH.
    Foadin CST; Nya FT; Ejuh GW; Malloum A; Conradie J; Ndjaka JM
    J Mol Model; 2020 Nov; 26(11):327. PubMed ID: 33145644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanotunable monatomic metal structures at graphene edges.
    Wei N; Chang C; Zhu H; Xu Z
    Phys Chem Chem Phys; 2014 Jun; 16(22):10295-300. PubMed ID: 24653998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half-metallic zigzag carbon nanotube dots.
    Hod O; Scuseria GE
    ACS Nano; 2008 Nov; 2(11):2243-9. PubMed ID: 19206389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure.
    Cheng X; Dong N; Li B; Zhang X; Zhang S; Jiao J; Blau WJ; Zhang L; Wang J
    Opt Express; 2013 Jul; 21(14):16486-93. PubMed ID: 23938499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Carbon Concentration Determines the Graphene Edge Structure.
    Li D; Wang Y; Cui T; Ma Y; Ding F
    J Phys Chem Lett; 2020 May; 11(9):3451-3457. PubMed ID: 32298587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of graphene nanoribbons.
    Faccio R; Denis PA; Pardo H; Goyenola C; MombrĂș AW
    J Phys Condens Matter; 2009 Jul; 21(28):285304. PubMed ID: 21828517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear optical properties of boron doped single-walled carbon nanotubes.
    Anand B; Podila R; Ayala P; Oliveira L; Philip R; Sai SS; Zakhidov AA; Rao AM
    Nanoscale; 2013 Aug; 5(16):7271-6. PubMed ID: 23817830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy termination of graphene edges via the formation of narrow nanotubes.
    Ivanovskaya VV; Zobelli A; Wagner P; Heggie MI; Briddon PR; Rayson MJ; Ewels CP
    Phys Rev Lett; 2011 Aug; 107(6):065502. PubMed ID: 21902339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.