These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25951342)

  • 41. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation.
    Inoue Y; Guérif M; Baret F; Skidmore A; Gitelson A; Schlerf M; Darvishzadeh R; Olioso A
    Plant Cell Environ; 2016 Dec; 39(12):2609-2623. PubMed ID: 27650474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles.
    Kovác D; Malenovský Z; Urban O; Špunda V; Kalina J; Ač A; Kaplan V; Hanuš J
    J Exp Bot; 2013 Apr; 64(7):1817-27. PubMed ID: 23564955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.
    Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A
    Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Wavebands selection for rice information extraction based on spectral bands inter-correlation].
    Wang FM; Huang JF; Xu JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1098-101. PubMed ID: 18720809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.
    Ozelkan E; Karaman M; Candar S; Coskun Z; Ormeci C
    J Environ Biol; 2015 Jan; 36 Spec No():91-100. PubMed ID: 26591887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diurnal photosynthesis, water use efficiency and light use efficiency of wheat under Mediterranean field conditions.
    Evrendilek F; Ben Asher J; Aydin M
    J Environ Biol; 2008 May; 29(3):397-406. PubMed ID: 18972699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum.
    Mishra KB; Vítek P; Barták M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 208():13-23. PubMed ID: 30282060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants.
    Kohzuma K; Hikosaka K
    Biochem Biophys Res Commun; 2018 Mar; 498(1):52-57. PubMed ID: 29501490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fiber optic light sensor.
    Chudyk W; Flynn KF
    Environ Monit Assess; 2015 Jun; 187(6):372. PubMed ID: 26009160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Mangrove canopy species discrimination based on spectral features of Geoeye-1 imagery].
    Li SS; Tian QJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):136-41. PubMed ID: 23586242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential use of the PRI and active fluorescence for the diagnosis of the physiological state of plants under ozone exposure and high atmospheric vapor pressure deficit.
    Merlier E; Hmimina G; Bagard M; Dufrêne E; Soudani K
    Photochem Photobiol Sci; 2017 Aug; 16(8):1238-1251. PubMed ID: 28617488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A time resolved intense pulsed light spectral analysis system.
    Clarkson DM; Gill D; Odeke M
    Lasers Med Sci; 2008 Jan; 23(1):59-64. PubMed ID: 17468898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light use efficiency of a warm-temperate mixed plantation in north China.
    Tong X; Zhang J; Meng P; Li J; Zheng N
    Int J Biometeorol; 2017 Sep; 61(9):1607-1615. PubMed ID: 28361227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data.
    Cui T; Wang Y; Sun R; Qiao C; Fan W; Jiang G; Hao L; Zhang L
    PLoS One; 2016; 11(4):e0153971. PubMed ID: 27088356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements.
    Liu BH; Shi YW
    Appl Opt; 2013 Jul; 52(21):5165-70. PubMed ID: 23872762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. WhiteRef: a new tower-based hyperspectral system for continuous reflectance measurements.
    Sakowska K; Gianelle D; Zaldei A; MacArthur A; Carotenuto F; Miglietta F; Zampedri R; Cavagna M; Vescovo L
    Sensors (Basel); 2015 Jan; 15(1):1088-105. PubMed ID: 25580905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species.
    Ma Z; Behling S; Ford ED
    Tree Physiol; 2014 Jul; 34(7):730-43. PubMed ID: 25070983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Genomic Loci Associated with the Photochemical Reflectance Index by Genome-Wide Association Study in Soybean.
    Herritt M; Dhanapal AP; Fritschi FB
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.
    Jones MO; Kimball JS; Jones LA
    Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.