BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25951802)

  • 1. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization.
    Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N
    J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach.
    Kaur G; Mehta SK
    J Pharm Sci; 2014 Mar; 103(3):937-44. PubMed ID: 24425102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrapment of multiple anti-Tb drugs in microemulsion system: quantitative analysis, stability, and in vitro release studies.
    Mehta SK; Kaur G; Bhasin KK
    J Pharm Sci; 2010 Apr; 99(4):1896-911. PubMed ID: 19894276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs.
    Mehta SK; Jindal N
    Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties.
    Mehta SK; Kaur G
    J Colloid Interface Sci; 2011 Apr; 356(2):589-97. PubMed ID: 21292277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural networks to optimize formulation components of a fixed-dose combination of rifampicin, isoniazid and pyrazinamide in a microemulsion.
    Glass BD; Agatonovic-Kustrin S; Wisch MH
    Curr Drug Discov Technol; 2005 Sep; 2(3):195-201. PubMed ID: 16472228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs.
    Mehta SK; Kaur G; Bhasin KK
    AAPS PharmSciTech; 2010 Mar; 11(1):143-53. PubMed ID: 20087697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery.
    Xu W; Wei X; Wei K; Cao X; Zhong S
    Int J Pharm; 2014 Dec; 476(1-2):116-23. PubMed ID: 25271077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity.
    Tostmann A; Boeree MJ; Peters WH; Roelofs HM; Aarnoutse RE; van der Ven AJ; Dekhuijzen PN
    Int J Antimicrob Agents; 2008 Jun; 31(6):577-80. PubMed ID: 18358703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.
    Battini S; Mannava MKC; Nangia A
    J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons.
    Liu L; Xu Y; Shea C; Fowler JS; Hooker JM; Tonge PJ
    J Med Chem; 2010 Apr; 53(7):2882-91. PubMed ID: 20205479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.
    Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T
    J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of isoniazid, rifampin and pyrazinamide in suspensions used for the treatment of tuberculosis in children.
    Seifart HI; Parkin DP; Donald PR
    Pediatr Infect Dis J; 1991 Nov; 10(11):827-31. PubMed ID: 1749695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic explanation to the catalysis by pyrazinamide and ethambutol of reaction between rifampicin and isoniazid in anti-TB FDCs.
    Bhutani H; Singh S; Jindal KC; Chakraborti AK
    J Pharm Biomed Anal; 2005 Oct; 39(5):892-9. PubMed ID: 15978767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation and statistical optimization of a novel crosslinked polymeric anti-tuberculosis drug delivery system.
    du Toit LC; Pillay V; Danckwerts MP; Penny C
    J Pharm Sci; 2008 Jun; 97(6):2176-207. PubMed ID: 17879985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy.
    Gürsoy A; Kut E; Ozkirimli S
    Int J Pharm; 2004 Mar; 271(1-2):115-23. PubMed ID: 15129978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed surfactant (altering chain length and head group) aggregates as an effective carrier for tuberculosis drug.
    Kumar A; Rekha ; Kansal SK; Ibhadon AO; Mehta SK
    Chem Phys Lipids; 2018 Sep; 215():11-17. PubMed ID: 30033376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatibility Between Four Anti-TB Drugs and Tablet Excipients Determined By Microcalorimetry.
    Aucamp M; Liebenberg W; Okaecwe T; Geldenhuys M; Stieger N
    Pharmazie; 2019 Jun; 74(6):350-351. PubMed ID: 31138372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH.
    Singh H; Bhandari R; Kaur IP
    Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry.
    Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK
    Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.