BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25952319)

  • 1. Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid.
    Li Z; Qin T; Wang K; Hackenberg M; Yan J; Gao Y; Yu LR; Shi L; Su Z; Chen T
    BMC Genomics; 2015 May; 16(1):365. PubMed ID: 25952319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential microRNA expression in aristolochic acid-induced upper urothelial tract cancers ex vivo.
    Tao L; Zeng Y; Wang J; Liu Z; Shen B; Ge J; Liu Y; Guo Y; Qiu J
    Mol Med Rep; 2015 Nov; 12(5):6533-46. PubMed ID: 26397152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-specific microRNA responses in rats treated with mutagenic and carcinogenic doses of aristolochic acid.
    Meng F; Li Z; Yan J; Manjanatha M; Shelton S; Yarborough S; Chen T
    Mutagenesis; 2014 Sep; 29(5):357-65. PubMed ID: 25106556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiles distinguish the carcinogenic effects of aristolochic acid in target (kidney) and non-target (liver) tissues in rats.
    Chen T; Guo L; Zhang L; Shi L; Fang H; Sun Y; Fuscoe JC; Mei N
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S20. PubMed ID: 17118142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice.
    Zhu Z; Xu X; Wang F; Song Y; Zhu Y; Quan W; Zhang X; Bi C; He H; Li S; Li X
    Mol Med Rep; 2020 Oct; 22(4):3367-3377. PubMed ID: 32945497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs and their predicted target messenger RNAs are deregulated by exposure to a carcinogenic dose of comfrey in rat liver.
    Li Z; Fuscoe JC; Chen T
    Environ Mol Mutagen; 2011 Jul; 52(6):469-78. PubMed ID: 21370286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism.
    Wang N; Wang R; Wang R; Tian Y; Shao C; Jia X; Chen S
    PLoS One; 2017; 12(8):e0181761. PubMed ID: 28777813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations induced by carcinogenic doses of aristolochic acid in kidney of Big Blue transgenic rats.
    Chen L; Mei N; Yao L; Chen T
    Toxicol Lett; 2006 Sep; 165(3):250-6. PubMed ID: 16764999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA expression profiles distinguish the carcinogenic effects of riddelliine in rat liver.
    Chen T; Li Z; Yan J; Yang X; Salminen W
    Mutagenesis; 2012 Jan; 27(1):59-66. PubMed ID: 21976715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of the miRNA-mRNA next-generation sequencing data for finding their associations in different cancer types.
    Bhowmick SS; Bhattacharjee D; Rato L
    Comput Biol Chem; 2020 Feb; 84():107152. PubMed ID: 31785969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer.
    Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S
    Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer.
    Vishnubalaji R; Hamam R; Abdulla MH; Mohammed MA; Kassem M; Al-Obeed O; Aldahmash A; Alajez NM
    Cell Death Dis; 2015 Jan; 6(1):e1614. PubMed ID: 25611389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression analysis reveals dysregulated miRNAs and miRNA-mRNA interactions in the development of contrast-induced acute kidney injury.
    Wang Z; Bao W; Zou X; Tan P; Chen H; Lai C; Liu D; Luo Z; Huang M
    PLoS One; 2019; 14(7):e0218574. PubMed ID: 31306435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys.
    Su Z; Li Z; Chen T; Li QZ; Fang H; Ding D; Ge W; Ning B; Hong H; Perkins RG; Tong W; Shi L
    Chem Res Toxicol; 2011 Sep; 24(9):1486-93. PubMed ID: 21834575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure.
    Ozden S; Turgut Kara N; Sezerman OU; Durasi İM; Chen T; Demirel G; Alpertunga B; Chipman JK; Mally A
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):203-12. PubMed ID: 26431795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.
    Yin K; Hacia JG; Zhong Z; Paine ML
    BMC Genomics; 2014 Nov; 15(1):998. PubMed ID: 25406666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma.
    Khella HW; Bakhet M; Allo G; Jewett MA; Girgis AH; Latif A; Girgis H; Von Both I; Bjarnason GA; Yousef GM
    Carcinogenesis; 2013 Oct; 34(10):2231-9. PubMed ID: 23715501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Aristolochic acid induces renal tubular injury and inhibits expression of bone morphogenetic protein-7 mRNA in renal tissue of rats].
    Wang HL; Zhang JY
    Zhong Xi Yi Jie He Xue Bao; 2008 May; 6(5):501-7. PubMed ID: 18471416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-specific microRNA response induced by acute exposure to aristolochic acid I in rats.
    Pu XY; Shen JY; Deng ZP; Zhang ZA
    Arch Toxicol; 2017 Mar; 91(3):1473-1483. PubMed ID: 27422293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of microRNA regulatory networks by integrating multidimensional high-throughput data.
    Yang JH; Qu LH
    Adv Exp Med Biol; 2013; 774():251-66. PubMed ID: 23377977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.