BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25952658)

  • 21. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating.
    Hao N; Wang YB; Zhang SP; Shi SQ; Nakashima K; Gong YK
    J Biomed Mater Res A; 2014 Sep; 102(9):2972-81. PubMed ID: 24115737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces.
    Iwasaki Y; Kurita K; Ishihara K; Nakabayashi N
    J Biomater Sci Polym Ed; 1996; 8(2):151-63. PubMed ID: 8957711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platelet adhesion on titanium oxide gels: effect of surface oxidation.
    Takemoto S; Yamamoto T; Tsuru K; Hayakawa S; Osaka A; Takashima S
    Biomaterials; 2004 Aug; 25(17):3485-92. PubMed ID: 15020122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of a layer-by-layer-assembled multilayer of anti-CD34 antibody, vascular endothelial growth factor, and heparin on the endothelialization and anticoagulation of titanium surface.
    Liu S; Liu T; Chen J; Maitz M; Chen C; Huang N
    J Biomed Mater Res A; 2013 Apr; 101(4):1144-57. PubMed ID: 23045161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane.
    Iwasaki Y; Aiba Y; Morimoto N; Nakabayashi N; Ishihara K
    J Biomed Mater Res; 2000 Dec; 52(4):701-8. PubMed ID: 11033553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platelet adhesion on the gradient surfaces grafted with phospholipid polymer.
    Iwasaki Y; Ishihara K; Nakabayashi N; Khang G; Jeon JH; Lee JW; Lee HB
    J Biomater Sci Polym Ed; 1998; 9(8):801-16. PubMed ID: 9724895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate.
    Kim HK; Kim K; Byun Y
    Biomaterials; 2005 Jun; 26(17):3435-44. PubMed ID: 15621232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces.
    Xu Y; Takai M; Ishihara K
    Biomaterials; 2009 Oct; 30(28):4930-8. PubMed ID: 19560198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials.
    Ishihara K; Nishiuchi D; Watanabe J; Iwasaki Y
    Biomaterials; 2004 Mar; 25(6):1115-22. PubMed ID: 14615177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility.
    Yuan B; Chen Q; Ding WQ; Liu PS; Wu SS; Lin SC; Shen J; Gai Y
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4031-9. PubMed ID: 22856677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization.
    Chen SH; Chang Y; Ishihara K
    Langmuir; 2017 Jan; 33(2):611-621. PubMed ID: 27802598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the blood compatibility of ion-selective electrodes by employing poly(MPC-co-BMA), a copolymer containing phosphorylcholine, as a membrane coating.
    Berrocal MJ; Johnson RD; Badr IH; Liu M; Gao D; Bachas LG
    Anal Chem; 2002 Aug; 74(15):3644-8. PubMed ID: 12175148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photo-immobilization of a phospholipid polymer for surface modification.
    Konno T; Hasuda H; Ishihara K; Ito Y
    Biomaterials; 2005 Apr; 26(12):1381-8. PubMed ID: 15482825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface modification of titanium substrate with a novel covalently-bound copolymer thin film for improving its platelet compatibility.
    Shen CH; Cho YJ; Lin YC; Chien LC; Lee TM; Chuang WH; Lin JC
    J Mater Sci Mater Med; 2015 Feb; 26(2):79. PubMed ID: 25631276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable surface coating of silicone elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins.
    Nagahashi K; Teramura Y; Takai M
    Colloids Surf B Biointerfaces; 2015 Oct; 134():384-91. PubMed ID: 26218525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced protein adsorption on novel phospholipid polymers.
    Ishihara K; Iwasaki Y
    J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion.
    Tanaka M; Iwasaki Y
    Acta Biomater; 2016 Aug; 40():54-61. PubMed ID: 26992370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.
    Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes.
    Xu ZK; Nie FQ; Qu C; Wan LS; Wu J; Yao K
    Biomaterials; 2005 Feb; 26(6):589-98. PubMed ID: 15282137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.