BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25952745)

  • 1. Relevance of nutrient media composition for hydrogen production in Chlamydomonas.
    Gonzalez-Ballester D; Jurado-Oller JL; Fernandez E
    Photosynth Res; 2015 Sep; 125(3):395-406. PubMed ID: 25952745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived chlamydomonas cells.
    Fouchard S; Hemschemeier A; Caruana A; Pruvost J; Legrand J; Happe T; Peltier G; Cournac L
    Appl Environ Microbiol; 2005 Oct; 71(10):6199-205. PubMed ID: 16204539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic hydrogen photoproduction by operation of carbon-concentrating mechanism in Chlamydomonas reinhardtii under sulfur deprivation condition.
    Hong ME; Shin YS; Kim BW; Sim SJ
    J Biotechnol; 2016 Mar; 221():55-61. PubMed ID: 26812657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling-up and proteomic analysis reveals photosynthetic and metabolic insights toward prolonged H
    Liu P; Ye DM; Chen M; Zhang J; Huang XH; Shen LL; Xia KK; Xu XJ; Xu YC; Guo YL; Wang YC; Huang F
    Photosynth Res; 2022 Dec; 154(3):397-411. PubMed ID: 35974136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
    Oey M; Ross IL; Stephens E; Steinbeck J; Wolf J; Radzun KA; Kügler J; Ringsmuth AK; Kruse O; Hankamer B
    PLoS One; 2013; 8(4):e61375. PubMed ID: 23613840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.
    Batyrova K; Gavrisheva A; Ivanova E; Liu J; Tsygankov A
    Int J Mol Sci; 2015 Jan; 16(2):2705-16. PubMed ID: 25629229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of algal Proton Gradient Regulation 5 increases reactive oxygen species scavenging and H
    Chen M; Zhang J; Zhao L; Xing J; Peng L; Kuang T; Rochaix JD; Huang F
    J Integr Plant Biol; 2016 Dec; 58(12):943-946. PubMed ID: 27762070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp.
    Vargas SR; Santos PVD; Giraldi LA; Zaiat M; Calijuri MDC
    FEMS Microbiol Lett; 2018 May; 365(9):. PubMed ID: 29590395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
    Hemschemeier A; Fouchard S; Cournac L; Peltier G; Happe T
    Planta; 2008 Jan; 227(2):397-407. PubMed ID: 17885762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen fuel production by transgenic microalgae.
    Melis A; Seibert M; Ghirardi ML
    Adv Exp Med Biol; 2007; 616():110-21. PubMed ID: 18161495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).
    Zhang L; Happe T; Melis A
    Planta; 2002 Feb; 214(4):552-61. PubMed ID: 11925039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.
    Allakhverdiev SI; Kreslavski VD; Thavasi V; Zharmukhamedov SK; Klimov VV; Nagata T; Nishihara H; Ramakrishna S
    Photochem Photobiol Sci; 2009 Feb; 8(2):148-56. PubMed ID: 19247505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analyses of H
    Volgusheva AA; Jokel M; Allahverdiyeva Y; Kukarskikh GP; Lukashev EP; Lambreva MD; Krendeleva TE; Antal TK
    Physiol Plant; 2017 Sep; 161(1):124-137. PubMed ID: 28386962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures.
    Laurinavichene TV; Kosourov SN; Ghirardi ML; Seibert M; Tsygankov AA
    J Biotechnol; 2008 Apr; 134(3-4):275-7. PubMed ID: 18294717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production.
    Bayro-Kaiser V; Nelson N
    Photosynth Res; 2016 Dec; 130(1-3):113-121. PubMed ID: 26951152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acclimation to hypoxia in Chlamydomonas reinhardtii: can biophotolysis be the major trigger for long-term H2 production?
    Scoma A; Durante L; Bertin L; Fava F
    New Phytol; 2014 Dec; 204(4):890-900. PubMed ID: 25103459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation of nutrient homeostasis among laboratory and field strains of Chlamydomonas reinhardtii.
    Esteves SM; Jadoul A; Iacono F; Schloesser M; Bosman B; Carnol M; Druet T; Cardol P; Hanikenne M
    J Exp Bot; 2023 Sep; 74(17):5198-5217. PubMed ID: 37235689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures.
    Kosourov S; Seibert M; Ghirardi ML
    Plant Cell Physiol; 2003 Feb; 44(2):146-55. PubMed ID: 12610217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.