BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25952745)

  • 21. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
    Antal TK; Krendeleva TE; Rubin AB
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):3-15. PubMed ID: 20878321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.
    Chen M; Zhao L; Sun YL; Cui SX; Zhang LF; Yang B; Wang J; Kuang TY; Huang F
    J Proteome Res; 2010 Aug; 9(8):3854-66. PubMed ID: 20509623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
    Wei L; Yi J; Wang L; Huang T; Gao F; Wang Q; Ma W
    Plant Cell Physiol; 2017 Mar; 58(3):451-457. PubMed ID: 28064249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance.
    Jo JH; Lee DS; Park JM
    Biotechnol Prog; 2006; 22(2):431-7. PubMed ID: 16599558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosystem I fluorescence as a physiological indicator of hydrogen production in Chlamydomonas reinhardtii.
    Anandraj A; White S; Mutanda T
    Bioresour Technol; 2019 Feb; 273():313-319. PubMed ID: 30448683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.
    Pinto TS; Malcata FX; Arrabaça JD; Silva JM; Spreitzer RJ; Esquível MG
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5635-43. PubMed ID: 23649352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
    Mus F; Dubini A; Seibert M; Posewitz MC; Grossman AR
    J Biol Chem; 2007 Aug; 282(35):25475-86. PubMed ID: 17565990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability.
    Roach T; Na CS; Krieger-Liszkay A
    Plant J; 2015 Mar; 81(5):759-66. PubMed ID: 25619314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii.
    Posewitz MC; Smolinski SL; Kanakagiri S; Melis A; Seibert M; Ghirardi ML
    Plant Cell; 2004 Aug; 16(8):2151-63. PubMed ID: 15269330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
    Kosourov S; Patrusheva E; Ghirardi ML; Seibert M; Tsygankov A
    J Biotechnol; 2007 Mar; 128(4):776-87. PubMed ID: 17275940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.
    Martín del Campo JS; Patiño R
    Biotechnol Bioeng; 2013 Dec; 110(12):3227-34. PubMed ID: 23797775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H₂ photoproduction in sulphur-deprived Chlamydomonas reinhardtii.
    Mignolet E; Lecler R; Ghysels B; Remacle C; Franck F
    J Biotechnol; 2012 Nov; 162(1):81-8. PubMed ID: 22842019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flavodiiron-Mediated O
    Burlacot A; Sawyer A; Cuiné S; Auroy-Tarrago P; Blangy S; Happe T; Peltier G
    Plant Physiol; 2018 Aug; 177(4):1639-1649. PubMed ID: 29976836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of process variables on photosynthetic algal hydrogen production.
    Hahn JJ; Ghirardi ML; Jacoby WA
    Biotechnol Prog; 2004; 20(3):989-91. PubMed ID: 15176910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma.
    Ban S; Lin W; Luo Z; Luo J
    Bioresour Technol; 2019 Mar; 275():425-429. PubMed ID: 30594343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system.
    Fedorov AS; Kosourov S; Ghirardi ML; Seibert M
    Appl Biochem Biotechnol; 2005; 121-124():403-12. PubMed ID: 15917617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq.
    Yang S; Guarnieri MT; Smolinski S; Ghirardi M; Pienkos PT
    Biotechnol Biofuels; 2013 Aug; 6(1):118. PubMed ID: 23971877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H
    González-Ballester D; Jurado-Oller JL; Galván A; Fernández E; Dubini A
    Biotechnol Biofuels; 2017; 10():117. PubMed ID: 28484517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
    Kosourov S; Tsygankov A; Seibert M; Ghirardi ML
    Biotechnol Bioeng; 2002 Jun; 78(7):731-40. PubMed ID: 12001165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.