BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25952745)

  • 41. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.
    Fouchard S; Pruvost J; Degrenne B; Titica M; Legrand J
    Biotechnol Bioeng; 2009 Jan; 102(1):232-45. PubMed ID: 18688816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.
    Antal TK; Krendeleva TE; Tyystjärvi E
    Photosynth Res; 2015 Sep; 125(3):357-81. PubMed ID: 25986411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures.
    Fakhimi N; Dubini A; Tavakoli O; González-Ballester D
    Bioresour Technol; 2019 Oct; 289():121648. PubMed ID: 31247525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae.
    Grechanik VI; Tsygankov AA
    Biophys Rev; 2022 Aug; 14(4):893-904. PubMed ID: 36124275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1.
    Baltz A; Dang KV; Beyly A; Auroy P; Richaud P; Cournac L; Peltier G
    Plant Physiol; 2014 Jul; 165(3):1344-1352. PubMed ID: 24820024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An endogenous microRNA (miRNA1166.1) can regulate photobio-H
    Wang Y; Zhuang X; Chen M; Zeng Z; Cai X; Li H; Hu Z
    Biotechnol Biofuels; 2018; 11():126. PubMed ID: 29743954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Algae-Bacteria Consortia as a Strategy to Enhance H
    Fakhimi N; Gonzalez-Ballester D; Fernández E; Galván A; Dubini A
    Cells; 2020 May; 9(6):. PubMed ID: 32486026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of prolonged hypoxia in autotrophic conditions in the hydrogen production by the green microalga Chlamydomonas reinhardtii in photobioreactor.
    Degrenne B; Pruvost J; Legrand J
    Bioresour Technol; 2011 Jan; 102(2):1035-43. PubMed ID: 20817442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acclimation of Chlamydomonas reinhardtii to its nutrient environment.
    Grossman A
    Protist; 2000 Oct; 151(3):201-24. PubMed ID: 11079767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions.
    Kosourov SN; Seibert M
    Biotechnol Bioeng; 2009 Jan; 102(1):50-8. PubMed ID: 18823051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.
    Nagy V; Vidal-Meireles A; Tengölics R; Rákhely G; Garab G; Kovács L; Tóth SZ
    Plant Cell Environ; 2016 Jul; 39(7):1460-72. PubMed ID: 26714836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochim Biophys Acta; 2011 Aug; 1807(8):919-26. PubMed ID: 21376011
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii.
    Krishna PS; Morello G; Mamedov F
    J Exp Bot; 2019 Nov; 70(21):6321-6336. PubMed ID: 31504725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new oxygen sensitivity and its potential application in photosynthetic H2 production.
    Lee JW; Greenbaum E
    Appl Biochem Biotechnol; 2003; 105 -108():303-13. PubMed ID: 12721454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A two-phase protocol for ambient hydrogen production using
    Elman T; Yacoby I
    STAR Protoc; 2022 Sep; 3(3):101640. PubMed ID: 36042878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases.
    Ghirardi ML
    Photosynth Res; 2015 Sep; 125(3):383-93. PubMed ID: 26022106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms.
    Morsy FM
    Photochem Photobiol; 2011; 87(1):137-42. PubMed ID: 21073473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of the Chlamydomonas reinhardtii sedoheptulose-1,7-bisphosphatase in Dunaliella bardawil leads to enhanced photosynthesis and increased glycerol production.
    Fang L; Lin HX; Low CS; Wu MH; Chow Y; Lee YK
    Plant Biotechnol J; 2012 Dec; 10(9):1129-35. PubMed ID: 22998361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii. Part II: Definition of model-based protocols and experimental validation.
    Degrenne B; Pruvost J; Titica M; Takache H; Legrand J
    Biotechnol Bioeng; 2011 Oct; 108(10):2288-99. PubMed ID: 21520019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Paradigm Shift in Algal H
    Tóth SZ; Yacoby I
    Trends Biotechnol; 2019 Nov; 37(11):1159-1163. PubMed ID: 31174881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.