BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25952847)

  • 1. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology.
    Seo HW; Jung EY; Go GW; Kim GD; Joo ST; Yang HS
    Food Chem; 2015 Oct; 185():106-11. PubMed ID: 25952847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vitro antioxidant properties of alcalase hydrolysate prepared from silkie fowl (Gallus gallus) blood protein.
    Cheng FY; Lai IC; Lin LC; Sakata R
    Anim Sci J; 2016 Jul; 87(7):921-8. PubMed ID: 26556592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates.
    Theodore AE; Raghavan S; Kristinsson HG
    J Agric Food Chem; 2008 Aug; 56(16):7459-66. PubMed ID: 18662014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of anchovy (Engraulis japonicus) protein hydrolysates with high free radical-scavenging activity using endogenous and commercial enzymes.
    He S; Wang F; Ning Z; Yang B; Wang Y
    Food Sci Technol Int; 2014 Dec; 20(8):567-78. PubMed ID: 23922287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate.
    Zhou D; Qin L; Zhu B; Li D; Yang J; Dong X; Murata Y
    J Sci Food Agric; 2012 Jun; 92(8):1694-701. PubMed ID: 22228502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized antioxidant peptides fractions preparation and secondary structure analysis by MIR.
    Lin S; Wang J; Zhao P; Pang Y; Ye H; Yuan Y; Liu J; Jones G
    Int J Biol Macromol; 2013 Aug; 59():151-7. PubMed ID: 23588000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate.
    Zheng Z; Si D; Ahmad B; Li Z; Zhang R
    Food Res Int; 2018 Apr; 106():410-419. PubMed ID: 29579942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activities of protein hydrolysates obtained from the housefly larvae.
    Zhang H; Wang P; Zhang AJ; Li X; Zhang JH; Qin QL; Wu YJ
    Acta Biol Hung; 2016 Sep; 67(3):236-46. PubMed ID: 27630047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology.
    Yu HC; Tan FJ
    Asian-Australas J Anim Sci; 2017 Nov; 30(11):1612-1619. PubMed ID: 28231699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of duck blood cell: process optimization of hydrolytic conditions and peptide hydrolysate characterization.
    Zheng Z; Wei X; Shang T; Huang Y; Hu C; Zhang R
    BMC Biotechnol; 2018 Oct; 18(1):67. PubMed ID: 30342496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.
    Ajisaka K; Oyanagi Y; Miyazaki T; Suzuki Y
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1179-85. PubMed ID: 26856546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.
    Venuste M; Zhang X; Shoemaker CF; Karangwa E; Abbas S; Kamdem PE
    Food Funct; 2013 Apr; 4(5):811-20. PubMed ID: 23591974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response Surface Optimisation for the Production of Antioxidant Hydrolysates from Stone Fish Protein Using Bromelain.
    Auwal SM; Zarei M; Abdul-Hamid A; Saari N
    Evid Based Complement Alternat Med; 2017; 2017():4765463. PubMed ID: 29234403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0.
    Niu Y; Ke D; Yang Q; Wang X; Chen Z; An X; Shen W
    Food Chem; 2012 Dec; 135(3):1377-82. PubMed ID: 22953869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological properties of Scomber japonicus meat hydrolysate prepared by subcritical water hydrolysis.
    Choi JS; Moon HE; Roh MK; Ha YM; Lee BB; Cho KK; Choi IS
    J Environ Biol; 2016 Jan; 37(1):57-63. PubMed ID: 26930861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of processing conditions on degree of hydrolysis, ACE inhibition, and antioxidant activities of protein hydrolysate from Acetes indicus.
    Dhanabalan V; Xavier M; Kannuchamy N; Asha KK; Singh CB; Balange A
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21222-21232. PubMed ID: 28735471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology.
    Wang D; Shahidi F
    Poult Sci; 2018 May; 97(5):1824-1831. PubMed ID: 29471508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of hydrolysis conditions for the production of antioxidant peptides from fish gelatin using response surface methodology.
    You L; Regenstein JM; Liu RH
    J Food Sci; 2010 Aug; 75(6):C582-7. PubMed ID: 20722914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method.
    Fan S; Hu Y; Li C; Liu Y
    PLoS One; 2014; 9(3):e92335. PubMed ID: 24637721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology.
    Vázquez JA; Blanco M; Massa AE; Amado IR; Pérez-Martín RI
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 28994711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.