These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25953078)

  • 1. High-throughput screening for modulators of cellular contractile force.
    Park CY; Zhou EH; Tambe D; Chen B; Lavoie T; Dowell M; Simeonov A; Maloney DJ; Marinkovic A; Tschumperlin DJ; Burger S; Frykenberg M; Butler JP; Stamer WD; Johnson M; Solway J; Fredberg JJ; Krishnan R
    Integr Biol (Camb); 2015 Oct; 7(10):1318-24. PubMed ID: 25953078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic Schlemm's canal inner wall: A model to study outflow physiology, glaucoma pathology and high-throughput drug screening.
    Dautriche CN; Szymanski D; Kerr M; Torrejon KY; Bergkvist M; Xie Y; Danias J; Stamer WD; Sharfstein ST
    Biomaterials; 2015 Oct; 65():86-92. PubMed ID: 26142779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An impedance-based cell contraction assay using human primary smooth muscle cells and fibroblasts.
    Bravo DD; Chernov-Rogan T; Chen J; Wang J
    J Pharmacol Toxicol Methods; 2018; 89():47-53. PubMed ID: 29056519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLECS technology for high-throughput screening of hypercontractile cellular phenotypes in fibrosis: A function-first approach to anti-fibrotic drug discovery.
    Wang Y; Cortes E; Huang R; Wan J; Zhao J; Hinz B; Damoiseaux R; Pushkarsky I
    SLAS Discov; 2024 Apr; 29(3):100138. PubMed ID: 38158044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interventions in mammalian cells; applications and uses in high-throughput screening and drug discovery.
    Hampton SL; Kinnaird AI
    Cell Biol Toxicol; 2010 Feb; 26(1):43-55. PubMed ID: 19904619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-well plate cell contraction assay detects negatively correlated cellular responses to pharmacological inhibitors in contractility and migration.
    Nehwa FJ; Matsui TS; Honghan L; Matsunaga D; Sakaguchi Y; Deguchi S
    Biochem Biophys Res Commun; 2020 Jan; 521(2):527-532. PubMed ID: 31677794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery.
    Schmitt S; Hendricks P; Weir J; Somasundaram R; Sittampalam GS; Nirmalanandhan VS
    Assay Drug Dev Technol; 2012 Apr; 10(2):137-47. PubMed ID: 22352900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening methods for influenza antiviral drug discovery.
    Atkins C; Evans CW; White EL; Noah JW
    Expert Opin Drug Discov; 2012 May; 7(5):429-38. PubMed ID: 22435452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of new technologies for cellular screening along the drug value chain.
    Möller C; Slack M
    Drug Discov Today; 2010 May; 15(9-10):384-90. PubMed ID: 20206290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics of Schlemm's canal endothelial cells: influence on F-actin architecture.
    Ethier CR; Read AT; Chan D
    Biophys J; 2004 Oct; 87(4):2828-37. PubMed ID: 15454474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLECS Technology for High-Throughput Single-Cell Force Biology and Screening.
    Pushkarsky I
    Assay Drug Dev Technol; 2018 Jan; 16(1):7-11. PubMed ID: 29266960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling.
    Spurlin TA; Bhadriraju K; Chung KH; Tona A; Plant AL
    Biomaterials; 2009 Oct; 30(29):5486-96. PubMed ID: 19640581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening.
    Eglen R; Reisine T
    Assay Drug Dev Technol; 2011 Apr; 9(2):108-24. PubMed ID: 21186936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward high-throughput drug screening on a chip-based parallel affinity separation platform.
    Ohlson S; Duong-Thi MD; Bergström M; Fex T; Hansson L; Pedersen L; Guazotti S; Isaksson R
    J Sep Sci; 2010 Sep; 33(17-18):2575-81. PubMed ID: 20730836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery.
    Evensen L; Micklem DR; Link W; Lorens JB
    Cytometry A; 2010 Jan; 77(1):41-51. PubMed ID: 19834964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of cysteinyl leukotriene-induced contraction of human cultured bronchial smooth muscle cells.
    Kitamura N; Kaminuma O; Ohtomo T; Kiyokawa N; Kobayashi N; Suko M; Mori A
    Int Arch Allergy Immunol; 2009; 149 Suppl 1():83-6. PubMed ID: 19494511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats.
    Kang H; Fan Y; Zhao P; Ren C; Wang Z; Deng X
    J Appl Physiol (1985); 2016 Mar; 120(5):537-45. PubMed ID: 26679611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on ion channel transporters as a target for the drug discovery].
    Imaizumi Y; Kaneko S
    Nihon Yakurigaku Zasshi; 2011 Dec; 138(6):227. PubMed ID: 22303567
    [No Abstract]   [Full Text] [Related]  

  • 19. Airway smooth muscle in asthma--not just more of the same.
    Shore SA
    N Engl J Med; 2004 Aug; 351(6):531-2. PubMed ID: 15295045
    [No Abstract]   [Full Text] [Related]  

  • 20. Control of stress propagation in the cytoplasm by prestress and loading frequency.
    Hu S; Wang N
    Mol Cell Biomech; 2006 Jun; 3(2):49-60. PubMed ID: 16903256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.