These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25953389)

  • 1. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect.
    Korayem MH; Mahmoodi Z; Mohammadi M
    J Theor Biol; 2018 Jan; 436():105-119. PubMed ID: 28941867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy.
    Korayem MH; Badkoobeh Hezaveh H; Taheri M
    Microsc Microanal; 2014 Dec; 20(6):1692-707. PubMed ID: 25289582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes.
    Habibnejad Korayem M; Farid AA; Hefzabad RN
    Beilstein J Nanotechnol; 2020; 11():147-166. PubMed ID: 32082958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.
    Korayem MH; Saraie MB; Saraee MB
    Ultramicroscopy; 2017 Apr; 175():9-24. PubMed ID: 28110179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.
    Korayem MH; Hoshiar AK; Ghofrani M
    J Mol Graph Model; 2017 Aug; 75():266-276. PubMed ID: 28618334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments.
    Palacio M; Bhushan B
    Nanotechnology; 2008 Aug; 19(31):315710. PubMed ID: 21828802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles.
    Korayem MH; Shahali S; Rastegar Z
    Biomech Model Mechanobiol; 2018 Jun; 17(3):745-761. PubMed ID: 29197991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of subsurface microscopy.
    Tetard L; Passian A; Farahi RH; Voy BH; Thundat T
    Methods Mol Biol; 2012; 926():331-43. PubMed ID: 22975973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastocapillarity and rolling dynamics of solid nanoparticles on soft elastic substrates.
    Tian Y; Liang H; Dobrynin AV
    Soft Matter; 2020 Mar; 16(9):2230-2237. PubMed ID: 31998920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanometre-scale rolling and sliding of carbon nanotubes.
    Falvo MR; Taylor RM; Helser A; Chi V; Brooks FP; Washburn S; Superfine R
    Nature; 1999 Jan; 397(6716):236-8. PubMed ID: 9930698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network sliding mode controller of atomic force microscope-based manipulation with different cantilever probes.
    Korayem MH; Esmaeilzadehha S
    Microsc Res Tech; 2019 Jul; 82(7):993-1003. PubMed ID: 30839142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size measurement of nanoparticles using atomic force microscopy.
    Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF
    Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.
    Morga M; Adamczyk Z; Oćwieja M; Bielańska E
    J Colloid Interface Sci; 2014 Jun; 424():75-83. PubMed ID: 24767501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical modeling of manipulation process in Trolling-Mode AFM.
    Mohammadi SZ; Moghadam M; Pishkenari HN
    Ultramicroscopy; 2019 Feb; 197():83-94. PubMed ID: 30530008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.
    Walczyk W; Schön PM; Schönherr H
    J Phys Condens Matter; 2013 May; 25(18):184005. PubMed ID: 23598774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography.
    Vasić B; Kratzer M; Matković A; Nevosad A; Ralević U; Jovanović D; Ganser C; Teichert C; Gajić R
    Nanotechnology; 2013 Jan; 24(1):015303. PubMed ID: 23220750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.