These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25953400)

  • 21. Approaches for identifying germ cell mutagens: Report of the 2013 IWGT workshop on germ cell assays(☆).
    Yauk CL; Aardema MJ; Benthem Jv; Bishop JB; Dearfield KL; DeMarini DM; Dubrova YE; Honma M; Lupski JR; Marchetti F; Meistrich ML; Pacchierotti F; Stewart J; Waters MD; Douglas GR
    Mutat Res Genet Toxicol Environ Mutagen; 2015 May; 783():36-54. PubMed ID: 25953399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revisiting the bacterial mutagenicity assays: Report by a workgroup of the International Workshops on Genotoxicity Testing (IWGT).
    Schoeny R; Cross KP; DeMarini DM; Elespuru R; Hakura A; Levy DD; Williams RV; Zeiger E; Escobar PA; Howe JR; Kato M; Lott J; Moore MM; Simon S; Stankowski LF; Sugiyama KI; van der Leede BM
    Mutat Res Genet Toxicol Environ Mutagen; 2020 Jan; 849():503137. PubMed ID: 32087853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An empirical comparison of low-dose extrapolation from points of departure (PoD) compared to extrapolations based upon methods that account for model uncertainty.
    Wheeler MW; Bailer AJ
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):75-82. PubMed ID: 23831127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode of action-based risk assessment of genotoxic carcinogens.
    Hartwig A; Arand M; Epe B; Guth S; Jahnke G; Lampen A; Martus HJ; Monien B; Rietjens IMCM; Schmitz-Spanke S; Schriever-Schwemmer G; Steinberg P; Eisenbrand G
    Arch Toxicol; 2020 Jun; 94(6):1787-1877. PubMed ID: 32542409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishing a quantitative framework for regulatory interpretation of genetic toxicity dose-response data: Margin of exposure case study of 48 compounds with both in vivo mutagenicity and carcinogenicity dose-response data.
    Chepelev N; Long AS; Beal M; Barton-Maclaren T; Johnson G; Dearfield KL; Roberts DJ; van Benthem J; White P
    Environ Mol Mutagen; 2023 Jan; 64(1):4-15. PubMed ID: 36345771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Weight of evidence analysis of the tumorigenic potential of 1,3-dichloropropene supports a threshold-based risk assessment.
    Yan ZJ; Bartels M; Gollapudi B; Driver J; Himmelstein M; Gehen S; Juberg D; van Wesenbeeck I; Terry C; Rasoulpour R
    Crit Rev Toxicol; 2020 Nov; 50(10):836-860. PubMed ID: 33528302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategy for genotoxicity testing--metabolic considerations.
    Ku WW; Bigger A; Brambilla G; Glatt H; Gocke E; Guzzie PJ; Hakura A; Honma M; Martus HJ; Obach RS; Roberts S;
    Mutat Res; 2007 Feb; 627(1):59-77. PubMed ID: 17141553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A case for a new paradigm in genetic toxicology testing.
    Pottenger LH; Gollapudi BB
    Mutat Res; 2009 Aug; 678(2):148-51. PubMed ID: 19616117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective.
    Bolt HM; Foth H; Hengstler JG; Degen GH
    Toxicol Lett; 2004 Jun; 151(1):29-41. PubMed ID: 15177638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A signal-to-noise crossover dose as the point of departure for health risk assessment.
    Sand S; Portier CJ; Krewski D
    Environ Health Perspect; 2011 Dec; 119(12):1766-74. PubMed ID: 21813365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genotoxicity as a toxicologically relevant endpoint to inform risk assessment: A case study with ethylene oxide.
    Gollapudi BB; Su S; Li AA; Johnson GE; Reiss R; Albertini RJ
    Environ Mol Mutagen; 2020 Nov; 61(9):852-871. PubMed ID: 32926486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An appraisal of critical effect sizes for the benchmark dose approach to assess dose-response relationships in genetic toxicology.
    Zeller A; Duran-Pacheco G; Guérard M
    Arch Toxicol; 2017 Dec; 91(12):3799-3807. PubMed ID: 28799093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Viracept (nelfinavir)--ethyl methanesulfonate case: a threshold risk assessment for human exposure to a genotoxic drug contamination?
    Lutz WK
    Toxicol Lett; 2009 Nov; 190(3):239-42. PubMed ID: 19695319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current methods in risk assessment of genotoxic chemicals.
    Cartus A; Schrenk D
    Food Chem Toxicol; 2017 Aug; 106(Pt B):574-582. PubMed ID: 27621049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible genotoxic modes of action for naphthalene.
    Brusick D; Small MS; Cavalieri EL; Chakravarti D; Ding X; Longfellow DG; Nakamura J; Rogan EC; Swenberg JA
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S43-50. PubMed ID: 18194829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A proposal for a novel rationale for critical effect size in dose-response analysis based on a multi-endpoint in vivo study with methyl methanesulfonate.
    Zeller A; Tang L; Dertinger SD; Funk J; Duran-Pacheco G; Guérard M
    Mutagenesis; 2016 May; 31(3):239-53. PubMed ID: 26590612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of in vivo genotoxicity assessment: combination of acute tests and integration into standard toxicity testing.
    Rothfuss A; Honma M; Czich A; Aardema MJ; Burlinson B; Galloway S; Hamada S; Kirkland D; Heflich RH; Howe J; Nakajima M; O'Donovan M; Plappert-Helbig U; Priestley C; Recio L; Schuler M; Uno Y; Martus HJ
    Mutat Res; 2011 Aug; 723(2):108-20. PubMed ID: 21182982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases.
    Lynch AM; Eastmond D; Elhajouji A; Froetschl R; Kirsch-Volders M; Marchetti F; Masumura K; Pacchierotti F; Schuler M; Tweats D
    Mutat Res Genet Toxicol Environ Mutagen; 2019 Nov; 847():403025. PubMed ID: 31699346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of oxidative DNA damage in TK6 human lymphoblastoid cells by use of the thymidine kinase gene-mutation assay and the in vitro modified comet assay: determination of No-Observed-Genotoxic-Effect-Levels.
    Platel A; Nesslany F; Gervais V; Claude N; Marzin D
    Mutat Res; 2011 Dec; 726(2):151-9. PubMed ID: 21930235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.