BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 25953427)

  • 1. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors.
    Nalepa MA; Panáček D; Dědek I; Jakubec P; Kupka V; Hrubý V; Petr M; Otyepka M
    Biosens Bioelectron; 2024 Jul; 256():116277. PubMed ID: 38613934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers.
    Rajendra V; Sicard C; Brennan JD; Brook MA
    Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet printed (bio)chemical sensing devices.
    Komuro N; Takaki S; Suzuki K; Citterio D
    Anal Bioanal Chem; 2013 Jul; 405(17):5785-805. PubMed ID: 23677254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet print microchannels based on a liquid template.
    Guo Y; Li L; Li F; Zhou H; Song Y
    Lab Chip; 2015 Apr; 15(7):1759-64. PubMed ID: 25686015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices.
    Gonzalez-Macia L; Morrin A; Smyth MR; Killard AJ
    Analyst; 2010 May; 135(5):845-67. PubMed ID: 20419231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based inkjet-printed microfluidic analytical devices.
    Yamada K; Henares TG; Suzuki K; Citterio D
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials.
    Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.
    Labroo P; Cui Y
    Anal Chim Acta; 2014 Feb; 813():90-6. PubMed ID: 24528665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed inkjet functionalization of silicon photonic biosensors.
    Kirk JT; Fridley GE; Chamberlain JW; Christensen ED; Hochberg M; Ratner DM
    Lab Chip; 2011 Apr; 11(7):1372-7. PubMed ID: 21327248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing.
    Setti L; Fraleoni-Morgera A; Ballarin B; Filippini A; Frascaro D; Piana C
    Biosens Bioelectron; 2005 Apr; 20(10):2019-26. PubMed ID: 15741071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme.
    Khan NI; Maddaus AG; Song E
    Biosensors (Basel); 2018 Jan; 8(1):. PubMed ID: 29342960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of capillary electrophoresis to examination of color inkjet printing inks for forensic purposes.
    Szafarska M; Wietecha-Posłuszny R; Woźniakiewicz M; Kościelniak P
    Forensic Sci Int; 2011 Oct; 212(1-3):78-85. PubMed ID: 21664080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
    Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD
    Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensor technology: technology push versus market pull.
    Luong JH; Male KB; Glennon JD
    Biotechnol Adv; 2008; 26(5):492-500. PubMed ID: 18577442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.