These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Inkjet print microchannels based on a liquid template. Guo Y; Li L; Li F; Zhou H; Song Y Lab Chip; 2015 Apr; 15(7):1759-64. PubMed ID: 25686015 [TBL] [Abstract][Full Text] [Related]
6. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Pavinatto FJ; Paschoal CW; Arias AC Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685 [TBL] [Abstract][Full Text] [Related]
7. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Gonzalez-Macia L; Morrin A; Smyth MR; Killard AJ Analyst; 2010 May; 135(5):845-67. PubMed ID: 20419231 [TBL] [Abstract][Full Text] [Related]
8. Paper-based inkjet-printed microfluidic analytical devices. Yamada K; Henares TG; Suzuki K; Citterio D Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471 [TBL] [Abstract][Full Text] [Related]
9. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
10. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices. Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046 [TBL] [Abstract][Full Text] [Related]
11. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230 [TBL] [Abstract][Full Text] [Related]
12. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Labroo P; Cui Y Anal Chim Acta; 2014 Feb; 813():90-6. PubMed ID: 24528665 [TBL] [Abstract][Full Text] [Related]
14. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Setti L; Fraleoni-Morgera A; Ballarin B; Filippini A; Frascaro D; Piana C Biosens Bioelectron; 2005 Apr; 20(10):2019-26. PubMed ID: 15741071 [TBL] [Abstract][Full Text] [Related]
15. Application of capillary electrophoresis to examination of color inkjet printing inks for forensic purposes. Szafarska M; Wietecha-Posłuszny R; Woźniakiewicz M; Kościelniak P Forensic Sci Int; 2011 Oct; 212(1-3):78-85. PubMed ID: 21664080 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250 [TBL] [Abstract][Full Text] [Related]
17. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449 [TBL] [Abstract][Full Text] [Related]
20. Research highlights: printing the future of microfabrication. Tseng P; Murray C; Kim D; Di Carlo D Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]