These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25953499)
1. MicroRNAs in skin tissue engineering. Miller KJ; Brown DA; Ibrahim MM; Ramchal TD; Levinson H Adv Drug Deliv Rev; 2015 Jul; 88():16-36. PubMed ID: 25953499 [TBL] [Abstract][Full Text] [Related]
2. Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Lu W; Yu J; Zhang Y; Ji K; Zhou Y; Li Y; Deng Z; Jin Y Cells Tissues Organs; 2012; 195(3):197-206. PubMed ID: 21494022 [TBL] [Abstract][Full Text] [Related]
3. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute. Idrus RB; Rameli MA; Low KC; Law JX; Chua KH; Latiff MB; Saim AB Adv Skin Wound Care; 2014 Apr; 27(4):171-80. PubMed ID: 24637651 [TBL] [Abstract][Full Text] [Related]
4. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Ananta M; Brown RA; Mudera V Tissue Eng Part A; 2012 Feb; 18(3-4):353-61. PubMed ID: 21913837 [TBL] [Abstract][Full Text] [Related]
5. [Primary observation on construction of skin with human hair follicle bulge cells with tissue engineering technique]. Wang HT; Chen B; Tang CW; Hu DH Zhonghua Shao Shang Za Zhi; 2007 Jun; 23(3):222-4. PubMed ID: 18019067 [TBL] [Abstract][Full Text] [Related]
6. Alimentary 'green' proteins as electrospun scaffolds for skin regenerative engineering. Lin L; Perets A; Har-el YE; Varma D; Li M; Lazarovici P; Woerdeman DL; Lelkes PI J Tissue Eng Regen Med; 2013 Dec; 7(12):994-1008. PubMed ID: 22499248 [TBL] [Abstract][Full Text] [Related]
7. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Stark HJ; Willhauck MJ; Mirancea N; Boehnke K; Nord I; Breitkreutz D; Pavesio A; Boukamp P; Fusenig NE Eur J Cell Biol; 2004 Dec; 83(11-12):631-45. PubMed ID: 15679108 [TBL] [Abstract][Full Text] [Related]
8. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Rahmani Del Bakhshayesh A; Annabi N; Khalilov R; Akbarzadeh A; Samiei M; Alizadeh E; Alizadeh-Ghodsi M; Davaran S; Montaseri A Artif Cells Nanomed Biotechnol; 2018 Jun; 46(4):691-705. PubMed ID: 28697631 [TBL] [Abstract][Full Text] [Related]
9. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Tchemtchoua VT; Atanasova G; Aqil A; Filée P; Garbacki N; Vanhooteghem O; Deroanne C; Noël A; Jérome C; Nusgens B; Poumay Y; Colige A Biomacromolecules; 2011 Sep; 12(9):3194-204. PubMed ID: 21761871 [TBL] [Abstract][Full Text] [Related]
10. Nonviral transfection strategies for keratinocytes, fibroblasts, and endothelial progenitor cells for ex vivo gene transfer to skin wounds. Dickens S; Van den Berge S; Hendrickx B; Verdonck K; Luttun A; Vranckx JJ Tissue Eng Part C Methods; 2010 Dec; 16(6):1601-8. PubMed ID: 20666605 [TBL] [Abstract][Full Text] [Related]
11. Restoration of the transepithelial potential within tissue-engineered human skin in vitro and during the wound healing process in vivo. Dubé J; Rochette-Drouin O; Lévesque P; Gauvin R; Roberge CJ; Auger FA; Goulet D; Bourdages M; Plante M; Germain L; Moulin VJ Tissue Eng Part A; 2010 Oct; 16(10):3055-63. PubMed ID: 20486795 [TBL] [Abstract][Full Text] [Related]
12. Diversity of fibroblasts--a review on implications for skin tissue engineering. Nolte SV; Xu W; Rennekampff HO; Rodemann HP Cells Tissues Organs; 2008; 187(3):165-76. PubMed ID: 18042973 [TBL] [Abstract][Full Text] [Related]
13. MicroRNAs in liver tissue engineering - New promises for failing organs. Raschzok N; Sallmon H; Pratschke J; Sauer IM Adv Drug Deliv Rev; 2015 Jul; 88():67-77. PubMed ID: 26116880 [TBL] [Abstract][Full Text] [Related]
14. Bioengineered matrices--part 1: attaining structural success in biologic skin substitutes. Widgerow AD Ann Plast Surg; 2012 Jun; 68(6):568-73. PubMed ID: 22643101 [TBL] [Abstract][Full Text] [Related]
15. The effects of age on monolayer culture of human keratinocytes for future use in skin engineering. Muhd Fakhruddin BH; Aminuddin BS; Mazlyzam AL; Ruszymah BH Med J Malaysia; 2004 May; 59 Suppl B():182-3. PubMed ID: 15468878 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Semenova E; Koegel H; Hasse S; Klatte JE; Slonimsky E; Bilbao D; Paus R; Werner S; Rosenthal N Am J Pathol; 2008 Nov; 173(5):1295-310. PubMed ID: 18832567 [TBL] [Abstract][Full Text] [Related]
17. An in vivo model of wound healing in genetically modified skin-humanized mice. Escámez MJ; García M; Larcher F; Meana A; Muñoz E; Jorcano JL; Del Río M J Invest Dermatol; 2004 Dec; 123(6):1182-91. PubMed ID: 15610532 [TBL] [Abstract][Full Text] [Related]
18. Use of an in vitro model of tissue-engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Harrison CA; Heaton MJ; Layton CM; Mac Neil S Wound Repair Regen; 2006; 14(2):203-9. PubMed ID: 16630110 [TBL] [Abstract][Full Text] [Related]
19. Using human umbilical cord cells for tissue engineering: a comparison with skin cells. Hayward CJ; Fradette J; Morissette Martin P; Guignard R; Germain L; Auger FA Differentiation; 2014; 87(3-4):172-81. PubMed ID: 24930038 [TBL] [Abstract][Full Text] [Related]
20. Modeling normal and pathological processes through skin tissue engineering. Garcia M; Escamez MJ; Carretero M; Mirones I; Martinez-Santamaria L; Navarro M; Jorcano JL; Meana A; Del Rio M; Larcher F Mol Carcinog; 2007 Aug; 46(8):741-5. PubMed ID: 17610222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]