These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 25953507)

  • 1. Exploiting replicative stress to treat cancer.
    Dobbelstein M; Sørensen CS
    Nat Rev Drug Discov; 2015 Jun; 14(6):405-23. PubMed ID: 25953507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinacrine Based Gold Hybrid Nanoparticles Caused Apoptosis through Modulating Replication Fork in Oral Cancer Stem Cells.
    Hembram KC; Dash SR; Das B; Sethy C; Chatterjee S; Bindhani BK; Kundu CN
    Mol Pharm; 2020 Jul; 17(7):2463-2472. PubMed ID: 32407635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting DNA Replication Stress for Cancer Treatment.
    Ubhi T; Brown GW
    Cancer Res; 2019 Apr; 79(8):1730-1739. PubMed ID: 30967400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies.
    Murai J; Thomas A; Miettinen M; Pommier Y
    Pharmacol Ther; 2019 Sep; 201():94-102. PubMed ID: 31128155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing DNA Replication Stress for Novel Cancer Therapy.
    Zhu H; Swami U; Preet R; Zhang J
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32854236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myc induced replicative stress response: How to cope with it and exploit it.
    Rohban S; Campaner S
    Biochim Biophys Acta; 2015 May; 1849(5):517-24. PubMed ID: 24735945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.
    Boyer AS; Walter D; Sørensen CS
    Semin Cancer Biol; 2016 Jun; 37-38():16-25. PubMed ID: 26805514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA repair dysregulation from cancer driver to therapeutic target.
    Curtin NJ
    Nat Rev Cancer; 2012 Dec; 12(12):801-17. PubMed ID: 23175119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained E2F-Dependent Transcription Is a Key Mechanism to Prevent Replication-Stress-Induced DNA Damage.
    Bertoli C; Herlihy AE; Pennycook BR; Kriston-Vizi J; de Bruin RAM
    Cell Rep; 2016 May; 15(7):1412-1422. PubMed ID: 27160911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stress: Driver and therapeutic target in genomically instable cancers.
    Schoonen PM; Guerrero Llobet S; van Vugt MATM
    Adv Protein Chem Struct Biol; 2019; 115():157-201. PubMed ID: 30798931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular responses to replication stress: Implications in cancer biology and therapy.
    Hsieh HJ; Peng G
    DNA Repair (Amst); 2017 Jan; 49():9-20. PubMed ID: 27908669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of cell cycle checkpoints using Xenopus cell-free extracts.
    Srinivasan SV; Gautier J
    Methods Mol Biol; 2011; 782():119-58. PubMed ID: 21870289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies.
    Puigvert JC; Sanjiv K; Helleday T
    FEBS J; 2016 Jan; 283(2):232-45. PubMed ID: 26507796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle control in cancer.
    Matthews HK; Bertoli C; de Bruin RAM
    Nat Rev Mol Cell Biol; 2022 Jan; 23(1):74-88. PubMed ID: 34508254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting SMARCAL1 as a novel strategy for cancer therapy.
    Zhang L; Fan S; Liu H; Huang C
    Biochem Biophys Res Commun; 2012 Oct; 427(2):232-5. PubMed ID: 22995303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the S and G2 checkpoint to treat cancer.
    Chen T; Stephens PA; Middleton FK; Curtin NJ
    Drug Discov Today; 2012 Mar; 17(5-6):194-202. PubMed ID: 22192883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer.
    Velic D; Couturier AM; Ferreira MT; Rodrigue A; Poirier GG; Fleury F; Masson JY
    Biomolecules; 2015 Nov; 5(4):3204-59. PubMed ID: 26610585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the Checkpoint to Kill Cancer Cells.
    Benada J; Macurek L
    Biomolecules; 2015 Aug; 5(3):1912-37. PubMed ID: 26295265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular mechanism regulating effect of anti-cancer agents].
    Saya H
    Gan To Kagaku Ryoho; 2009 Jan; 36(1):1-5. PubMed ID: 19151557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.