BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25953609)

  • 41. Application of a Fixed Monitoring Benchmark Approach to Evaluate Attainment of Time-Variable Water Quality Criteria: Copper Biotic Ligand Model as a Case Study.
    Ryan A; Santore R; Delos C
    Integr Environ Assess Manag; 2018 Nov; 14(6):722-735. PubMed ID: 29920938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Joint Probabilistic Analysis of Risk for Aquatic Species and Exceedence Frequency for the Agricultural Use of Chlorpyrifos in the Pampean Region, Argentina.
    Alvarez M; Du Mortier C; Jaureguiberry S; Venturino A
    Environ Toxicol Chem; 2019 Aug; 38(8):1748-1755. PubMed ID: 30985933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicted no-effect concentration and risk assessment for 17-[beta]-estradiol in waters of China.
    Wu F; Fang Y; Li Y; Cui X; Zhang R; Guo G; Giesy JP
    Rev Environ Contam Toxicol; 2014; 228():31-56. PubMed ID: 24162091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments.
    Obiakor MO; Tighe M; Wang Z; Ezeonyejiaku CD; Pereg L; Wilson SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25276-25290. PubMed ID: 28929352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints.
    Guo L; Li Z; Gao P; Hu H; Gibson M
    Chemosphere; 2015 Nov; 139():133-7. PubMed ID: 26081577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can We Reasonably Predict Chronic Species Sensitivity Distributions from Acute Species Sensitivity Distributions?
    Hiki K; Iwasaki Y
    Environ Sci Technol; 2020 Oct; 54(20):13131-13136. PubMed ID: 32924457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acute Toxicity Assessment and Prediction Models of Four Heavy Metals.
    Zheng X; Wei C; Fan J; Liu X; Hou Y; Ling J; Wei J; Liu P
    Toxics; 2023 Apr; 11(4):. PubMed ID: 37112573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of species sensitivity distributions for species from China and the USA.
    Wang X; Yan Z; Liu Z; Zhang C; Wang W; Li H
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):168-76. PubMed ID: 24014227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles.
    Adam N; Schmitt C; De Bruyn L; Knapen D; Blust R
    Sci Total Environ; 2015 Sep; 526():233-42. PubMed ID: 25933293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size.
    Zhao J; Chen B
    Ecotoxicol Environ Saf; 2016 Mar; 125():161-9. PubMed ID: 26701839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water quality criteria derivation and ecological risk assessment for triphenyltin in China.
    Wen J; Cui X; Gibson M; Li Z
    Ecotoxicol Environ Saf; 2018 Oct; 161():397-401. PubMed ID: 29906758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of a New Approach Method for Grouped Chemical Hazard Estimation: The Toxicity-Normalized Species Sensitivity Distribution (SSDn).
    Lambert FN; Raimondo S; Barron MG
    Environ Sci Technol; 2022 Jun; 56(12):8278-8289. PubMed ID: 35533293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: A case study of the South China Sea.
    Gu YG; Ning JJ; Ke CL; Huang HH
    Ecotoxicol Environ Saf; 2018 Nov; 163():551-557. PubMed ID: 30077152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals.
    Posthuma L; van Gils J; Zijp MC; van de Meent D; de Zwart D
    Environ Toxicol Chem; 2019 Apr; 38(4):905-917. PubMed ID: 30675920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web.
    Barka S; Pavillon JF; Amiard-Triquet C
    Environ Toxicol; 2010 Aug; 25(4):350-60. PubMed ID: 19449389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The difference between temperate and tropical saltwater species' acute sensitivity to chemicals is relatively small.
    Wang Z; Kwok KW; Lui GC; Zhou GJ; Lee JS; Lam MH; Leung KM
    Chemosphere; 2014 Jun; 105():31-43. PubMed ID: 24289976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.
    Mu Y; Wu F; Chen C; Liu Y; Zhao X; Haiqing Liao ; Giesy JP
    Environ Pollut; 2014 May; 188():50-5. PubMed ID: 24553246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution and contamination of heavy metals in surface sediments of the Daya Bay and adjacent shelf, China.
    Zhao G; Ye S; Yuan H; Ding X; Wang J
    Mar Pollut Bull; 2016 Nov; 112(1-2):420-426. PubMed ID: 27491366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water-effect ratio of copper and its application on setting site-specific water quality criteria for protecting marine ecosystems of Hong Kong.
    Bao VWW; Ho KKY; Lai KKY; Mak YKY; Mak EPY; Zhou GJ; Giesy JP; Leung KMY
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3170-3182. PubMed ID: 28656578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of aquatic life criteria in China: viewpoint on the challenge.
    Jin X; Wang Y; Giesy JP; Richardson KL; Wang Z
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):61-6. PubMed ID: 23546856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.