These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25954055)

  • 1. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.
    Weinke AD; Kendall ST; Kroll DJ; Strickler EA; Weinert ME; Holcomb TM; Defore AA; Dila DK; Snider MJ; Gereaux LC; Biddanda BA
    J Plankton Res; 2014 Nov; 36(6):1528-1542. PubMed ID: 25954055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia).
    Agusti S; Vigoya L; Duarte CM
    PeerJ; 2018; 6():e5081. PubMed ID: 29967741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominance of net autotrophy in arid landscape low relief polar lakes, Nunavut, Canada.
    Ayala-Borda P; Bogard MJ; Grosbois G; Prėskienis V; Culp JM; Power M; Rautio M
    Glob Chang Biol; 2024 Feb; 30(2):e17193. PubMed ID: 38380447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From lake to estuary, the tale of two waters: a study of aquatic continuum biogeochemistry.
    Julian P; Osborne TZ
    Environ Monit Assess; 2018 Jan; 190(2):96. PubMed ID: 29372426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of littoral periphyton on whole-lake metabolism relates to littoral vegetation in humic lakes.
    Vesterinen J; Devlin SP; Syväranta J; Jones RI
    Ecology; 2017 Dec; 98(12):3074-3085. PubMed ID: 28888038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Autotrophic Organisms Contribute Significantly to the Internal Carbon Cycling Potential of a Boreal Lake.
    Peura S; Buck M; Aalto SL; Morales SE; Nykänen H; Eiler A
    mBio; 2018 Aug; 9(4):. PubMed ID: 30108167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes.
    Ask J; Karlsson J; Persson L; Ask P; Byström P; Jansson M
    Ecology; 2009 Jul; 90(7):1923-32. PubMed ID: 19694140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the width of the nearshore zone in Lake Michigan using eleven years of MODIS satellite imagery.
    Warren GJ; Lesht BM; Barbiero RP
    J Great Lakes Res; 2018 Aug; 44(4):563-572. PubMed ID: 31031519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing riverine organic C:N ratios along the Pearl River: Implications for estuarine and coastal carbon cycles.
    Liu Q; Liang Y; Cai WJ; Wang K; Wang J; Yin K
    Sci Total Environ; 2020 Mar; 709():136052. PubMed ID: 31884266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of unvegetated tidal flats to coastal carbon flux.
    Lin WJ; Wu J; Lin HJ
    Glob Chang Biol; 2020 Jun; 26(6):3443-3454. PubMed ID: 32267045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variations of organic-carbon and nutrient transport through a tropical estuary (Tsengwen) in southwestern Taiwan.
    Hung JJ; Huang MH
    Environ Geochem Health; 2005 Feb; 27(1):75-95. PubMed ID: 15688133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microbial community of the water column of the Selenga River-Lake Baikal biogeochemical barrier].
    Maksimenko SIu; Zemskaia TI; Pavlova ON; Ivanov VG; Buriukhaev SP
    Mikrobiologiia; 2008; 77(5):660-7. PubMed ID: 19004348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal changes in primary production and respiration in a subtropical lake undergoing eutrophication.
    Tonetta D; Petrucio MM
    Environ Monit Assess; 2020 Aug; 192(9):565. PubMed ID: 32766991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes.
    Algesten G; Sobek S; Bergström AK; Jonsson A; Tranvik LJ; Jansson M
    Microb Ecol; 2005 Nov; 50(4):529-35. PubMed ID: 16341642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Community Composition and Diversity of Coastal Bacterioplankton Assemblages in Lakes Michigan, Erie, and Huron.
    Olapade OA
    Microb Ecol; 2018 Apr; 75(3):598-608. PubMed ID: 28963574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments.
    Singh S; Dash P; Silwal S; Feng G; Adeli A; Moorhead RJ
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14124-14141. PubMed ID: 28417327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring spatial variation in secondary production and food quality using a common consumer approach in Lake Erie.
    Larson JH; Richardson WB; Evans MA; Schaeffer J; Wynne T; Bartsch M; Bartsch L; Nelson JC; Vallazza J
    Ecol Appl; 2016 Apr; 26(3):873-85. PubMed ID: 27411257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Hastie A; Lauerwald R; Weyhenmeyer G; Sobek S; Verpoorter C; Regnier P
    Glob Chang Biol; 2018 Feb; 24(2):711-728. PubMed ID: 28892578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska.
    Burke SM; Zimmerman CE; Laske SM; Koch JC; Derry AM; Guernon S; Branfireun BA; Swanson HK
    Sci Total Environ; 2020 Nov; 743():140564. PubMed ID: 32758814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.