BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

939 related articles for article (PubMed ID: 25954161)

  • 1. Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
    Kocher M; Gleichgerrcht E; Nesland T; Rorden C; Fridriksson J; Spampinato MV; Bonilha L
    Front Neural Circuits; 2015; 9():16. PubMed ID: 25954161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Identification of Rich-Club Organization in Weighted and Dense Structural Connectomes.
    Liang X; Yeh CH; Connelly A; Calamante F
    Brain Topogr; 2019 Jan; 32(1):1-16. PubMed ID: 29971633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.
    Schmidt R; LaFleur KJ; de Reus MA; van den Berg LH; van den Heuvel MP
    BMC Neurosci; 2015 Sep; 16():54. PubMed ID: 26329640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The most relevant human brain regions for functional connectivity: Evidence for a dynamical workspace of binding nodes from whole-brain computational modelling.
    Deco G; Van Hartevelt TJ; Fernandes HM; Stevner A; Kringelbach ML
    Neuroimage; 2017 Feb; 146():197-210. PubMed ID: 27825955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns.
    Sa de Almeida J; Meskaldji DE; Loukas S; Lordier L; Gui L; Lazeyras F; Hüppi PS
    Neuroimage; 2021 Jan; 225():117440. PubMed ID: 33039621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.
    Zhao T; Cao M; Niu H; Zuo XN; Evans A; He Y; Dong Q; Shu N
    Hum Brain Mapp; 2015 Oct; 36(10):3777-92. PubMed ID: 26173024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of rich club organisation in cerebral small vessel disease.
    Tuladhar AM; Lawrence A; Norris DG; Barrick TR; Markus HS; de Leeuw FE
    Hum Brain Mapp; 2017 Apr; 38(4):1751-1766. PubMed ID: 27935154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted structural and functional rich club organization of the brain connectome in patients with generalized tonic-clonic seizure.
    Li R; Liao W; Li Y; Yu Y; Zhang Z; Lu G; Chen H
    Hum Brain Mapp; 2016 Dec; 37(12):4487-4499. PubMed ID: 27466063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional connectivity hubs of the mouse brain.
    Liska A; Galbusera A; Schwarz AJ; Gozzi A
    Neuroimage; 2015 Jul; 115():281-91. PubMed ID: 25913701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rich-club organization of the human connectome.
    van den Heuvel MP; Sporns O
    J Neurosci; 2011 Nov; 31(44):15775-86. PubMed ID: 22049421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex.
    Collin G; Sporns O; Mandl RC; van den Heuvel MP
    Cereb Cortex; 2014 Sep; 24(9):2258-67. PubMed ID: 23551922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep.
    Wang S; Li Y; Qiu S; Zhang C; Wang G; Xian J; Li T; He H
    Neuroimage Clin; 2020; 25():102188. PubMed ID: 32018124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rich Club Organization and Cognitive Performance in Healthy Older Participants.
    Baggio HC; Segura B; Junque C; de Reus MA; Sala-Llonch R; Van den Heuvel MP
    J Cogn Neurosci; 2015 Sep; 27(9):1801-10. PubMed ID: 25941870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging.
    Bonilha L; Gleichgerrcht E; Fridriksson J; Rorden C; Breedlove JL; Nesland T; Paulus W; Helms G; Focke NK
    PLoS One; 2015; 10(8):e0135247. PubMed ID: 26332788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alcohol use in emerging adults associated with lower rich-club connectivity and greater connectome network disorganization.
    Hua JPY; de Lange SC; van den Heuvel MP; Boness CL; Trela CJ; McDowell YE; Merrill AM; Piasecki TM; Sher KJ; Kerns JG
    Drug Alcohol Depend; 2022 Jan; 230():109198. PubMed ID: 34861495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge density imaging: mapping the anatomic embedding of the structural connectome within the white matter of the human brain.
    Owen JP; Chang YS; Mukherjee P
    Neuroimage; 2015 Apr; 109():402-17. PubMed ID: 25592996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rich club organization and intermodule communication in the cat connectome.
    de Reus MA; van den Heuvel MP
    J Neurosci; 2013 Aug; 33(32):12929-39. PubMed ID: 23926249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.