These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 25954282)
1. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Yamamoto N; Takano T; Tanaka K; Ishige T; Terashima S; Endo C; Kurusu T; Yajima S; Yano K; Tada Y Front Plant Sci; 2015; 6():241. PubMed ID: 25954282 [TBL] [Abstract][Full Text] [Related]
2. Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. Tada Y; Komatsubara S; Kurusu T AoB Plants; 2014 Jul; 6():. PubMed ID: 25024277 [TBL] [Abstract][Full Text] [Related]
3. Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Tada Y; Kawano R; Komatsubara S; Nishimura H; Katsuhara M; Ozaki S; Terashima S; Yano K; Endo C; Sato M; Okamoto M; Sawada Y; Hirai MY; Kurusu T Plant Sci; 2019 Jan; 278():54-63. PubMed ID: 30471729 [TBL] [Abstract][Full Text] [Related]
4. Na Kawakami Y; Imran S; Katsuhara M; Tada Y Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32847126 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. Bedre R; Mangu VR; Srivastava S; Sanchez LE; Baisakh N BMC Genomics; 2016 Aug; 17(1):657. PubMed ID: 27542721 [TBL] [Abstract][Full Text] [Related]
6. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535 [TBL] [Abstract][Full Text] [Related]
7. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress. Xiong Y; Yan H; Liang H; Zhang Y; Guo B; Niu M; Jian S; Ren H; Zhang X; Li Y; Zeng S; Wu K; Zheng F; Teixeira da Silva JA; Ma G BMC Genomics; 2019 Oct; 20(1):724. PubMed ID: 31601194 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524 [TBL] [Abstract][Full Text] [Related]
9. Isolation, expression, and functional analysis of developmentally regulated plasma membrane polypeptide 1 (DREPP1) in Sporobolus virginicus grown under alkali salt stress. Theerawitaya C; Yamada-Kato N; Singh HP; Cha-Um S; Takabe T Protoplasma; 2018 Sep; 255(5):1423-1432. PubMed ID: 29574487 [TBL] [Abstract][Full Text] [Related]
10. de novo transcriptomic profiling of differentially expressed genes in grass halophyte Urochondra setulosa under high salinity. Mann A; Kumar N; Kumar A; Lata C; Kumar A; Meena BL; Mishra D; Grover M; Gaba S; Parameswaran C; Mantri N Sci Rep; 2021 Mar; 11(1):5548. PubMed ID: 33692429 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. Diray-Arce J; Clement M; Gul B; Khan MA; Nielsen BL BMC Genomics; 2015 May; 16(1):353. PubMed ID: 25943316 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. Fan P; Nie L; Jiang P; Feng J; Lv S; Chen X; Bao H; Guo J; Tai F; Wang J; Jia W; Li Y PLoS One; 2013; 8(11):e80595. PubMed ID: 24265831 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
14. High-Affinity K+ Transporters from a Halophyte, Sporobolus virginicus, Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, X. laevis Oocytes and Yeast. Tada Y; Endo C; Katsuhara M; Horie T; Shibasaka M; Nakahara Y; Kurusu T Plant Cell Physiol; 2019 Jan; 60(1):176-187. PubMed ID: 30325438 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress. Zhang X; Liao M; Chang D; Zhang F BMC Res Notes; 2014 Dec; 7():927. PubMed ID: 25515859 [TBL] [Abstract][Full Text] [Related]
16. Morphological and physiological responses to increased salinity in marsh and dune ecotypes ofSporobolus virginicus (L.) Kunth. Blits KC; Gallagher JL Oecologia; 1991 Sep; 87(3):330-335. PubMed ID: 28313258 [TBL] [Abstract][Full Text] [Related]
17. Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. Garg R; Verma M; Agrawal S; Shankar R; Majee M; Jain M DNA Res; 2014 Feb; 21(1):69-84. PubMed ID: 24104396 [TBL] [Abstract][Full Text] [Related]
18. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590 [TBL] [Abstract][Full Text] [Related]
19. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. Mirdar Mansuri R; Shobbar ZS; Babaeian Jelodar N; Ghaffari MR; Nematzadeh GA; Asari S Rice (N Y); 2019 Mar; 12(1):13. PubMed ID: 30830459 [TBL] [Abstract][Full Text] [Related]
20. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes. Liu J; Zhou Y; Luo C; Xiang Y; An L Genes (Basel); 2016 Mar; 7(4):. PubMed ID: 27023614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]