These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25954294)

  • 21. Genomic signature of adaptation to climate in Medicago truncatula.
    Yoder JB; Stanton-Geddes J; Zhou P; Briskine R; Young ND; Tiffin P
    Genetics; 2014 Apr; 196(4):1263-75. PubMed ID: 24443444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus and Medicago truncatula.
    Soares-Cavalcanti NM; Belarmino LC; Kido EA; Pandolfi V; Marcelino-Guimarães FC; Rodrigues FA; Pereira GA; Benko-Iseppon AM
    Genet Mol Biol; 2012 Jun; 35(1 (suppl)):247-59. PubMed ID: 22802710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives.
    Cortés AJ; López-Hernández F; Blair MW
    Front Genet; 2022; 13():910386. PubMed ID: 35991553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide identification and comparative analysis of alternative splicing across four legume species.
    Wang Z; Zhang H; Gong W
    Planta; 2019 Apr; 249(4):1133-1142. PubMed ID: 30603789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes.
    Hiremath PJ; Kumar A; Penmetsa RV; Farmer A; Schlueter JA; Chamarthi SK; Whaley AM; Carrasquilla-Garcia N; Gaur PM; Upadhyaya HD; Kavi Kishor PB; Shah TM; Cook DR; Varshney RK
    Plant Biotechnol J; 2012 Aug; 10(6):716-32. PubMed ID: 22703242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.
    Dwivedi SL; Scheben A; Edwards D; Spillane C; Ortiz R
    Front Plant Sci; 2017; 8():1461. PubMed ID: 28900432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Medicago truncatula: Genetic and Genomic Resources.
    Garmier M; Gentzbittel L; Wen J; Mysore KS; Ratet P
    Curr Protoc Plant Biol; 2017 Dec; 2(4):318-349. PubMed ID: 33383982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LDRGDb - Legumes disease resistance genes database.
    Saxena H; Kulshreshtha A; Agarwal A; Kumar A; Singh N; Jain CK
    Front Plant Sci; 2023; 14():1143111. PubMed ID: 37143876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model Legumes: Functional Genomics Tools in Medicago truncatula.
    Cañas LA; Beltrán JP
    Methods Mol Biol; 2018; 1822():11-37. PubMed ID: 30043294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors.
    Mochida K; Yoshida T; Sakurai T; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Bioinformatics; 2010 Jan; 26(2):290-1. PubMed ID: 19933159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species.
    Pottorff M; Ehlers JD; Fatokun C; Roberts PA; Close TJ
    BMC Genomics; 2012 Jun; 13():234. PubMed ID: 22691139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata.
    Grønlund M; Constantin G; Piednoir E; Kovacev J; Johansen IE; Lund OS
    Virus Res; 2008 Aug; 135(2):345-9. PubMed ID: 18495283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of Soybean (Glycine max) Transient Transgenic Roots.
    Tóth K; Batek J; Stacey G
    Curr Protoc Plant Biol; 2016 May; 1(1):1-13. PubMed ID: 31725980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.
    Shirasawa K; Bertioli DJ; Varshney RK; Moretzsohn MC; Leal-Bertioli SC; Thudi M; Pandey MK; Rami JF; Foncéka D; Gowda MV; Qin H; Guo B; Hong Y; Liang X; Hirakawa H; Tabata S; Isobe S
    DNA Res; 2013 Apr; 20(2):173-84. PubMed ID: 23315685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula.
    Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation.
    Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN
    Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding.
    Haupt M; Schmid K
    Plant Cell Environ; 2020 Jun; 43(6):1421-1436. PubMed ID: 32227644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes.
    Tan S; Debellé F; Gamas P; Frugier F; Brault M
    BMC Genomics; 2019 May; 20(1):373. PubMed ID: 31088345
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.