BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25954810)

  • 1. Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex.
    Lemkul JA; Lewis SN; Bassaganya-Riera J; Bevan DR
    PLoS One; 2015; 10(5):e0123984. PubMed ID: 25954810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ.
    Kilu W; Merk D; Steinhilber D; Proschak E; Heering J
    J Biol Chem; 2021 Jul; 297(1):100814. PubMed ID: 34081964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex.
    Ricci CG; Silveira RL; Rivalta I; Batista VS; Skaf MS
    Sci Rep; 2016 Jan; 6():19940. PubMed ID: 26823026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of reciprocal salt bridges at the heterodimerization interface alters the dimerization properties of mouse RXRalpha and PPARgamma1.
    Chan LS; Wells RA
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1080-5. PubMed ID: 17521607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heterodimer partner RXRalpha on PPARgamma activation function-2 helix in solution.
    Lu J; Chen M; Stanley SE; Li E
    Biochem Biophys Res Commun; 2008 Jan; 365(1):42-6. PubMed ID: 17980149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond MD Simulations to Explore the Structural and Energetic Differences between the Human RXRα-PPARγ vs. RXRα-PPARγ-DNA.
    Azam F; Bello M
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic structure of mutant PPARgamma LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARgamma/RXRalpha function by covalently bound ligands.
    Waku T; Shiraki T; Oyama T; Morikawa K
    FEBS Lett; 2009 Jan; 583(2):320-4. PubMed ID: 19101554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 9-cis-retinoic acid up-regulates expression of transcriptional coregulator PELP1, a novel coactivator of the retinoid X receptor alpha pathway.
    Singh RR; Gururaj AE; Vadlamudi RK; Kumar R
    J Biol Chem; 2006 Jun; 281(22):15394-404. PubMed ID: 16574651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-Dependent Corepressor (LCoR) Is a Rexinoid-Inhibited Peroxisome Proliferator-Activated Receptor γ-Retinoid X Receptor α Coactivator.
    Shalom-Barak T; Liersemann J; Memari B; Flechner L; Devor CE; Bernardo TM; Kim S; Matsumoto N; Friedman SL; Evans RM; White JH; Barak Y
    Mol Cell Biol; 2018 May; 38(9):. PubMed ID: 29463649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants of magnolol targeting both RXRα and PPARγ.
    Zhang H; Xu X; Chen L; Chen J; Hu L; Jiang H; Shen X
    PLoS One; 2011; 6(11):e28253. PubMed ID: 22140563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex.
    Almeida NMS; Bali SK; James D; Wang C; Wilson AK
    J Chem Inf Model; 2023 Dec; 63(23):7423-7443. PubMed ID: 37990410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA.
    Chandra V; Huang P; Hamuro Y; Raghuram S; Wang Y; Burris TP; Rastinejad F
    Nature; 2008 Nov; 456(7220):350-6. PubMed ID: 19043829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA.
    de Vera IMS; Zheng J; Novick S; Shang J; Hughes TS; Brust R; Munoz-Tello P; Gardner WJ; Marciano DP; Kong X; Griffin PR; Kojetin DJ
    Structure; 2017 Oct; 25(10):1506-1518.e4. PubMed ID: 28890360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of antagonists on the conformational exchange of the retinoid X receptor alpha ligand-binding domain.
    Lu J; Dawson MI; Hu QY; Xia Z; Dambacher JD; Ye M; Zhang XK; Li E
    Magn Reson Chem; 2009 Dec; 47(12):1071-80. PubMed ID: 19757405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of allosteric communication in the human PPARalpha-RXRalpha heterodimer.
    Venäläinen T; Molnár F; Oostenbrink C; Carlberg C; Peräkylä M
    Proteins; 2010 Mar; 78(4):873-87. PubMed ID: 19847917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Recognition of PPARγ by Kinase Cdk5/p25: Insights from a Combination of Protein-Protein Docking and Adaptive Biasing Force Simulations.
    Mottin M; Souza PC; Skaf MS
    J Phys Chem B; 2015 Jul; 119(26):8330-9. PubMed ID: 26047365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flightless-1, a novel transcriptional modulator of PPARγ through competing with RXRα.
    Choi JS; Choi SS; Kim ES; Seo YK; Seo JK; Kim EK; Suh PG; Choi JH
    Cell Signal; 2015 Mar; 27(3):614-20. PubMed ID: 25479590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of ligand binding and protein dynamics of human retinoid X receptor alpha ligand-binding domain by nuclear magnetic resonance.
    Lu J; Cistola DP; Li E
    Biochemistry; 2006 Feb; 45(6):1629-39. PubMed ID: 16460010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.
    Isakova A; Berset Y; Hatzimanikatis V; Deplancke B
    J Biol Chem; 2016 May; 291(19):10293-306. PubMed ID: 26912662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linked magnolol dimer as a selective PPARγ agonist - Structure-based rational design, synthesis, and bioactivity evaluation.
    Dreier D; Latkolik S; Rycek L; Schnürch M; Dymáková A; Atanasov AG; Ladurner A; Heiss EH; Stuppner H; Schuster D; Mihovilovic MD; Dirsch VM
    Sci Rep; 2017 Oct; 7(1):13002. PubMed ID: 29057944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.