These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25954871)

  • 1. Viscoelastic transient of confined red blood cells.
    Prado G; Farutin A; Misbah C; Bureau L
    Biophys J; 2015 May; 108(9):2126-36. PubMed ID: 25954871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics analysis of red blood cell membrane viscoelasticity.
    Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S
    Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM; Worthy PR; Evans EA
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the viscoelastic recovery of red cell membrane.
    Hochmuth RM; Buxbaum KL; Evans EA
    Biophys J; 1980 Jan; 29(1):177-82. PubMed ID: 7260246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of anomalous blood viscosity in confined shear flow.
    Thiébaud M; Shen Z; Harting J; Misbah C
    Phys Rev Lett; 2014 Jun; 112(23):238304. PubMed ID: 24972235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation of red blood cells and the viscoelastic properties of a concentrated red cell suspension.
    Murata T
    Biorheology; 1984; 21(3):379-91. PubMed ID: 6466807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties.
    Gómez F; Silva LS; Araújo GRS; Frases S; Pinheiro AAS; Agero U; Pontes B; Viana NB
    Phys Rev E; 2020 Jun; 101(6-1):062403. PubMed ID: 32688571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical models of capillary flow.
    Skalak R
    Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
    Fedosov DA; Peltomäki M; Gompper G
    Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.