BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25954879)

  • 1. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles.
    Wang Q; London E
    Biophys J; 2018 Aug; 115(4):664-678. PubMed ID: 30082033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes.
    Hirano K; Kinoshita M; Matsumori N
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184036. PubMed ID: 36055359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy.
    Vázquez RF; Ovalle-García E; Antillón A; Ortega-Blake I; Bakás LS; Muñoz-Garay C; Maté SM
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183467. PubMed ID: 32871116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations.
    Seo S; Murata M; Shinoda W
    J Phys Chem Lett; 2020 Jul; 11(13):5171-5176. PubMed ID: 32515980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains.
    Kinoshita M; Kyo T; Matsumori N
    Sci Rep; 2020 Jul; 10(1):11794. PubMed ID: 32678223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet.
    Enoki TA; Feigenson GW
    Biochim Biophys Acta Biomembr; 2022 Oct; 1864(10):183995. PubMed ID: 35753393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion.
    Enoki TA; Wu J; Heberle FA; Feigenson GW
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183586. PubMed ID: 33647248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study.
    Vázquez RF; Daza Millone MA; Pavinatto FJ; Fanani ML; Oliveira ON; Vela ME; Maté SM
    Colloids Surf B Biointerfaces; 2019 Jan; 173():549-556. PubMed ID: 30347381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties.
    Heberle FA; Marquardt D; Doktorova M; Geier B; Standaert RF; Heftberger P; Kollmitzer B; Nickels JD; Dick RA; Feigenson GW; Katsaras J; London E; Pabst G
    Langmuir; 2016 May; 32(20):5195-200. PubMed ID: 27128636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive Translocation of Phospholipids in Asymmetric Model Membranes: Solid-State
    Watanabe H; Hanashima S; Yano Y; Yasuda T; Murata M
    Langmuir; 2023 Oct; 39(43):15189-15199. PubMed ID: 37729012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
    Tsai WC; Feigenson GW
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):478-485. PubMed ID: 30529459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine.
    Pandit SA; Jakobsson E; Scott HL
    Biophys J; 2004 Nov; 87(5):3312-22. PubMed ID: 15339797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emphatic visualization of sphingomyelin-rich domains by inter-lipid FRET imaging using fluorescent sphingomyelins.
    Kinoshita M; Ano H; Murata M; Shigetomi K; Ikenouchi J; Matsumori N
    Sci Rep; 2017 Dec; 7(1):16801. PubMed ID: 29196620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies.
    Tian J; Nickels J; Katsaras J; Cheng X
    J Phys Chem B; 2016 Aug; 120(33):8438-48. PubMed ID: 27121138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature induced lipid membrane restructuring and changes in nanomechanics.
    Bhojoo U; Chen M; Zou S
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC.
    Lopez C; Cheng K; Perez J
    Chem Phys Lipids; 2018 Sep; 215():46-55. PubMed ID: 30076798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.