These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25954887)

  • 1. A kinetic study of ovalbumin fibril formation: the importance of fragmentation and end-joining.
    Kalapothakis JM; Morris RJ; Szavits-Nossan J; Eden K; Covill S; Tabor S; Gillam J; Barran PE; Allen RJ; MacPhee CE
    Biophys J; 2015 May; 108(9):2300-11. PubMed ID: 25954887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An equilibrium model for linear and closed-loop amyloid fibril formation.
    Yang S; Griffin MD; Binger KJ; Schuck P; Howlett GJ
    J Mol Biol; 2012 Aug; 421(2-3):364-77. PubMed ID: 22370559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of fibril formation of a non-inhibitory serpin ovalbumin revealed by the identification of amyloidogenic core regions.
    Tanaka N; Morimoto Y; Noguchi Y; Tada T; Waku T; Kunugi S; Morii T; Lee YF; Konno T; Takahashi N
    J Biol Chem; 2011 Feb; 286(7):5884-94. PubMed ID: 21156792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitric oxide on conformational changes of ovalbumin accompanying self-assembly into non-disease-associated fibrils.
    You DJ; Lee JH; Kim JY; Jhon GJ; Jung HS
    Nitric Oxide; 2015 May; 47():1-9. PubMed ID: 25683505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directionality of growth and kinetics of branched fibril formation.
    Razbin M; Benetatos P; Mirabbaszadeh K
    J Chem Phys; 2020 Dec; 153(24):244101. PubMed ID: 33380088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation.
    Milošević J; Petrić J; Jovčić B; Janković B; Polović N
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117882. PubMed ID: 31818644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid fibril polymorphism is under kinetic control.
    Pellarin R; Schuetz P; Guarnera E; Caflisch A
    J Am Chem Soc; 2010 Oct; 132(42):14960-70. PubMed ID: 20923147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-Induced Aggregation of Hen Ovalbumin Suggests a Key Factor Responsible for Serpin Polymerization.
    Noji M; So M; Yamaguchi K; Hojo H; Onda M; Akazawa-Ogawa Y; Hagihara Y; Goto Y
    Biochemistry; 2018 Sep; 57(37):5415-5426. PubMed ID: 30148614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets.
    Karunarathne K; Bushra N; Williams O; Raza I; Tirado L; Fakhre D; Fakhre F; Muschol M
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly.
    Xue WF; Homans SW; Radford SE
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8926-31. PubMed ID: 18579777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of natural biopolymers on amyloid fibril formation and morphology.
    Ow SY; Bekard I; Dunstan DE
    Int J Biol Macromol; 2018 Jan; 106():30-38. PubMed ID: 28778524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling amyloid fibril formation.
    Dovidchenko NV; Galzitskaya OV
    Biochemistry (Mosc); 2011 Mar; 76(3):366-73. PubMed ID: 21568873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of protein fibril formation: Methods and mechanisms.
    Kumar EK; Haque N; Prabhu NP
    Int J Biol Macromol; 2017 Jul; 100():3-10. PubMed ID: 27327908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly of Ovalbumin Amyloid Pores: Effects on Membrane Permeabilization, Dipole Potential, and Bilayer Fluidity.
    Bhattacharya M; Dogra P
    Langmuir; 2015 Aug; 31(32):8911-22. PubMed ID: 26209136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid fibril formation by the chain B subunit of monellin occurs by a nucleation-dependent polymerization mechanism.
    Sabareesan AT; Udgaonkar JB
    Biochemistry; 2014 Feb; 53(7):1206-17. PubMed ID: 24495141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils.
    Sugimoto Y; Kamada Y; Tokunaga Y; Shinohara H; Matsumoto M; Kusakabe T; Ohkuri T; Ueda T
    Biochem Cell Biol; 2011 Dec; 89(6):533-44. PubMed ID: 22004604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly Mechanism for Aggregation of Amyloid Fibrils.
    Zhang L
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30041455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of salt concentration on association of the amyloid protofilaments of hen egg white lysozyme studied by time-resolved neutron scattering.
    Fujiwara S; Matsumoto F; Yonezawa Y
    J Mol Biol; 2003 Aug; 331(1):21-8. PubMed ID: 12875832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.
    Kashchiev D
    Biophys J; 2015 Nov; 109(10):2126-36. PubMed ID: 26588571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.