BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25954916)

  • 1. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.
    Sepehr F; Paddison SJ
    J Phys Chem A; 2015 Jun; 119(22):5749-61. PubMed ID: 25954916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs).
    Zhao N; Riley H; Song C; Jiang Z; Tsay KC; Neagu R; Shi Z
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33802914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries.
    Chen D; Hickner MA
    Phys Chem Chem Phys; 2013 Jul; 15(27):11299-305. PubMed ID: 23732218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes.
    Lutz C; Breuckmann M; Hampel S; Kreyenschmidt M; Ke X; Beuermann S; Schafner K; Turek T; Kunz U; Buzanich AG; Radtke M; Fittschen UEA
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.
    Noh C; Jung M; Henkensmeier D; Nam SW; Kwon Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36799-36809. PubMed ID: 29016108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.
    Choi SW; Kim TH; Cha SH
    Recent Pat Nanotechnol; 2017 Jul; 11(2):123-129. PubMed ID: 27799030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and Dynamic Absorption of Electrolyte Species in Cation/Anion Exchange Membranes of Vanadium Redox Flow Batteries.
    Nguyen TD; Whitehead A; Wai N; Ong SJH; Scherer GG; Xu ZJ
    ChemSusChem; 2019 Mar; 12(5):1076-1083. PubMed ID: 30523669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of economical and highly efficient electrolyte using vanadium pentoxide for vanadium redox flow battery.
    Beriwal N; Verma A
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72187-72195. PubMed ID: 35088278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.
    Vijayakumar M; Li L; Nie Z; Yang Z; Hu J
    Phys Chem Chem Phys; 2012 Aug; 14(29):10233-42. PubMed ID: 22735894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab Initio Metadynamics Study of the VO
    Jiang Z; Klyukin K; Alexandrov V
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20621-20626. PubMed ID: 29808985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries.
    Lou X; Yuan D; Yu Y; Lei Y; Ding M; Sun Q; Jia C
    Chem Asian J; 2020 Aug; 15(15):2357-2363. PubMed ID: 32166875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.
    Park M; Ryu J; Cho J
    Chem Asian J; 2015 Oct; 10(10):2096-110. PubMed ID: 25899910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bunch-Like Tertiary Amine Grafted Polysulfone Membrane for VRFBs with Simultaneously High Proton Conductivity and Low Vanadium Ion Permeability.
    Tan Q; Lu S; Si J; Wang H; Wu C; Li X; Xiang Y
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28195670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized anion exchange membranes for vanadium redox flow batteries.
    Chen D; Hickner MA; Agar E; Kumbur EC
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7559-66. PubMed ID: 23799776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures.
    Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries.
    Ashraf Gandomi Y; Aaron DS; Mench MM
    Membranes (Basel); 2017 Jun; 7(2):. PubMed ID: 28587268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of adsorption-desorption kinetics of aqueous V
    Jiang Z; Klyukin K; Alexandrov V
    Phys Chem Chem Phys; 2017 Jun; 19(23):14897-14901. PubMed ID: 28555224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior Electrocatalytic Activity of a Robust Carbon-Felt Electrode with Oxygen-Rich Phosphate Groups for All-Vanadium Redox Flow Batteries.
    Kim KJ; Lee HS; Kim J; Park MS; Kim JH; Kim YJ; Skyllas-Kazacos M
    ChemSusChem; 2016 Jun; 9(11):1329-38. PubMed ID: 27106165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries.
    Ye J; Xia L; Li H; de Arquer FPG; Wang H
    Adv Mater; 2024 May; ():e2402090. PubMed ID: 38776138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.