These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 25954953)
1. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor. Zhang Y; Hu F; Wang B; Zhang X; Liu C Sensors (Basel); 2015 May; 15(5):10723-33. PubMed ID: 25954953 [TBL] [Abstract][Full Text] [Related]
2. Enantioselective fluorescent sensors: a tale of BINOL. Pu L Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528 [TBL] [Abstract][Full Text] [Related]
3. An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives. Wolf C; Liu S; Reinhardt BC Chem Commun (Camb); 2006 Oct; (40):4242-4. PubMed ID: 17031445 [TBL] [Abstract][Full Text] [Related]
4. A fluorescent chiral chemosensor for the recognition of the two enantiomers of chiral carboxylates. Li Y; Tamilavan V; Hyun MH Chirality; 2012 May; 24(5):406-11. PubMed ID: 22514035 [TBL] [Abstract][Full Text] [Related]
5. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups. Zheng YS; Hu YJ; Li DM; Chen YC Talanta; 2010 Jan; 80(3):1470-4. PubMed ID: 20006116 [TBL] [Abstract][Full Text] [Related]
6. Novel enantioselective fluorescent sensors for tartrate anion based on acridinezswsxa. Wang C; Wang P; Liu X; Fu J; Xue K; Xu K Luminescence; 2017 Nov; 32(7):1313-1318. PubMed ID: 28512780 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective sensing of chiral carboxylic acids. Mei X; Wolf C J Am Chem Soc; 2004 Nov; 126(45):14736-7. PubMed ID: 15535695 [TBL] [Abstract][Full Text] [Related]
8. Chemoselective and enantioselective fluorescent identification of specific amino acid enantiomers. Pu L Chem Commun (Camb); 2022 Jul; 58(58):8038-8048. PubMed ID: 35772182 [TBL] [Abstract][Full Text] [Related]
9. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids. Naziroglu HN; Durmaz M; Bozkurt S; Sirit A Chirality; 2011 Jul; 23(6):463-71. PubMed ID: 21472784 [TBL] [Abstract][Full Text] [Related]
10. Enantioselective recognition of α-hydroxycarboxylic acids and N-Boc-amino acids by counterion-displacement assays with a chiral nickel(II) complex. He X; Zhang Q; Wang W; Lin L; Liu X; Feng X Org Lett; 2011 Feb; 13(4):804-7. PubMed ID: 21247141 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective recognition of carboxylates: a receptor derived from alpha-aminoxy acids functions as a chiral shift reagent for carboxylic acids. Yang D; Li X; Fan YF; Zhang DW J Am Chem Soc; 2005 Jun; 127(22):7996-7. PubMed ID: 15926807 [TBL] [Abstract][Full Text] [Related]
12. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor. Wu Y; Guo H; James TD; Zhao J J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028 [TBL] [Abstract][Full Text] [Related]
13. Enantioselective Fluorescent Imaging of Free Amino Acids in Living Cells. Zeng C; Zhang X; Pu L Chemistry; 2017 Feb; 23(10):2432-2438. PubMed ID: 27911982 [TBL] [Abstract][Full Text] [Related]
14. 1-(5-Dimethylamino-1-naphthalenesulphonyl)-(S)-3-aminopyrrolidine (DNS-Apy) as a fluorescence chiral labelling reagent for carboxylic acid enantiomers. al-Kindy S; Santa T; Fukushima T; Homma H; Imai K Biomed Chromatogr; 1997; 11(3):137-42. PubMed ID: 9192105 [TBL] [Abstract][Full Text] [Related]
15. Sensing of enantiomeric excess in chiral carboxylic acids. Akdeniz A; Mosca L; Minami T; Anzenbacher P Chem Commun (Camb); 2015 Apr; 51(26):5770-3. PubMed ID: 25720499 [TBL] [Abstract][Full Text] [Related]
16. Highly enantioselective recognition of structurally diverse alpha-hydroxycarboxylic acids using a fluorescent sensor. Liu HL; Peng Q; Wu YD; Chen D; Hou XL; Sabat M; Pu L Angew Chem Int Ed Engl; 2010; 49(3):602-6. PubMed ID: 20014266 [No Abstract] [Full Text] [Related]
17. Chiral recognition by fluorescent chemosensors based on N-dansyl-amino acid-modified cyclodextrins. Ikeda H; Li Q; Ueno A Bioorg Med Chem Lett; 2006 Oct; 16(20):5420-3. PubMed ID: 16890432 [TBL] [Abstract][Full Text] [Related]
18. Noncovalent interactions between ([18]crown-6)-tetracarboxylic acid and amino acids: electrospray-ionization mass spectrometry investigation of the chiral-recognition processes. Gerbaux P; De Winter J; Cornil D; Ravicini K; Pesesse G; Cornil J; Flammang R Chemistry; 2008; 14(35):11039-49. PubMed ID: 18956399 [TBL] [Abstract][Full Text] [Related]
19. Some applications of a chiral fluorometric reagent, (S)-TBMB carboxylic acid. Meguro H; Kim JH; Bai C; Nishida Y; Ohrui H Chirality; 2001 Aug; 13(8):441-5. PubMed ID: 11466766 [TBL] [Abstract][Full Text] [Related]
20. Enantioselective synthesis of beta-aryl-gamma-amino acid derivatives via Cu-catalyzed asymmetric 1,4-reductions of gamma-phthalimido-substituted alpha,beta-unsaturated carboxylic acid esters. Deng J; Hu XP; Huang JD; Yu SB; Wang DY; Duan ZC; Zheng Z J Org Chem; 2008 Aug; 73(15):6022-4. PubMed ID: 18597530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]