These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25955297)

  • 1. Conversion of a Mono- and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering.
    Lan D; Popowicz GM; Pavlidis IV; Zhou P; Bornscheuer UT; Wang Y
    Chembiochem; 2015 Jul; 16(10):1431-4. PubMed ID: 25955297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity.
    Xu T; Liu L; Hou S; Xu J; Yang B; Wang Y; Liu J
    J Struct Biol; 2012 Jun; 178(3):363-9. PubMed ID: 22484238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for substrate selectivity of a mono- and diacylglycerol lipase from Malassezia globosa.
    Liu L; Gao C; Lan D; Yang B; Wang Y
    Biochem Biophys Res Commun; 2012 Jul; 424(2):285-9. PubMed ID: 22750000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malassezia globosa MgMDL2 lipase: Crystal structure and rational modification of substrate specificity.
    Lan D; Xu H; Xu J; Dubin G; Liu J; Iqbal Khan F; Wang Y
    Biochem Biophys Res Commun; 2017 Jun; 488(2):259-265. PubMed ID: 28433636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff.
    Sommer B; Overy DP; Kerr RG
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26298017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa.
    Lan D; Wang Q; Xu J; Zhou P; Yang B; Wang Y
    Int J Mol Sci; 2015 Mar; 16(4):7273-88. PubMed ID: 25837472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.
    Gao C; Lan D; Liu L; Zhang H; Yang B; Wang Y
    Biochimie; 2014 Jul; 102():29-36. PubMed ID: 24556587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties and structure analysis of a DAG-Like lipase from Malassezia globosa.
    Xu H; Lan D; Yang B; Wang Y
    Int J Mol Sci; 2015 Mar; 16(3):4865-79. PubMed ID: 25749469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of product-bound SMG1 lipase: active site gating implications.
    Guo S; Xu J; Pavlidis IV; Lan D; Bornscheuer UT; Liu J; Wang Y
    FEBS J; 2015 Dec; 282(23):4538-47. PubMed ID: 26365206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secreted lipases from Malassezia globosa: recombinant expression and determination of their substrate specificities.
    Sommer B; Overy DP; Haltli B; Kerr RG
    Microbiology (Reading); 2016 Jul; 162(7):1069-1079. PubMed ID: 27130210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649.
    Yuan D; Lan D; Xin R; Yang B; Wang Y
    Int J Mol Sci; 2014 Jun; 15(6):10554-66. PubMed ID: 24927145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study.
    Lan D; Wang Q; Popowicz GM; Yang B; Tang Q; Wang Y
    J Microbiol Biotechnol; 2015 Nov; 25(11):1827-34. PubMed ID: 26239010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanine to leucine point mutation in oxyanion hole improved catalytic efficiency of Lip12 from Yarrowia lipolytica.
    Kumari A; Gupta R
    Enzyme Microb Technol; 2013 Dec; 53(6-7):386-90. PubMed ID: 24315641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of mono- and diacylglycerol lipase activities by bradykinin in neural cultures.
    Farooqui AA; Anderson DK; Flynn C; Bradel E; Means ED; Horrocks LA
    Biochem Biophys Res Commun; 1990 Jan; 166(2):1001-9. PubMed ID: 2302218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipases operative at the fat cell surface: attempt at an integrated approach.
    Verine A; Boyer J
    Cell Biochem Funct; 1987 Jul; 5(3):175-81. PubMed ID: 3608100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa.
    Juntachai W; Oura T; Kajiwara S
    Microbiology (Reading); 2011 Dec; 157(Pt 12):3492-3499. PubMed ID: 22016565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural model of mono- and diacylglycerol lipase from Penicillium camembertii.
    Isobe K; Aumann KD; Schmid RD
    J Biotechnol; 1994 Jan; 32(1):83-8. PubMed ID: 7764452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mono-, di- and triacylglycerol lipase activities in the isolated rat heart.
    Stam H; Broekhoven-Schokker S; Hülsmann WC
    Biochim Biophys Acta; 1986 Jan; 875(1):76-86. PubMed ID: 3940538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase.
    Riccardi L; Arencibia JM; Bono L; Armirotti A; Girotto S; De Vivo M
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):441-451. PubMed ID: 28088576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.
    Wang Z; Li S; Sun L; Fan J; Liu Z
    PLoS One; 2013; 8(8):e72146. PubMed ID: 23991054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.