These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25955619)

  • 1. Determination of photoluminescence quantum yields of scattering media with an integrating sphere: direct and indirect illumination.
    Würth C; Resch-Genger U
    Appl Spectrosc; 2015 Jun; 69(6):749-59. PubMed ID: 25955619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative quantum yield measurements of coumarin encapsulated in core-shell silica nanoparticles.
    Herz E; Marchincin T; Connelly L; Bonner D; Burns A; Switalski S; Wiesner U
    J Fluoresc; 2010 Jan; 20(1):67-72. PubMed ID: 19688298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared.
    Würth C; Pauli J; Lochmann C; Spieles M; Resch-Genger U
    Anal Chem; 2012 Feb; 84(3):1345-52. PubMed ID: 22242570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative and absolute determination of fluorescence quantum yields of transparent samples.
    Würth C; Grabolle M; Pauli J; Spieles M; Resch-Genger U
    Nat Protoc; 2013 Aug; 8(8):1535-50. PubMed ID: 23868072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields.
    Huber A; Behnke T; Würth C; Jaeger C; Resch-Genger U
    Anal Chem; 2012 Apr; 84(8):3654-61. PubMed ID: 22404690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute quantum yield measurement of powder samples.
    Moreno LA
    J Vis Exp; 2012 May; (63):e3066. PubMed ID: 22617474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Resonance-scattering spectral determination of H2O2 using rhodamine 6G association particles].
    Li ZZ; Jiang ZL; Yang G; Lu D; Liu SP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1286-8. PubMed ID: 16329502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of ultrabright nanoporous fluorescent silica discoids using an inorganic silica precursor.
    Volkov DO; Cho EB; Sokolov I
    Nanoscale; 2011 May; 3(5):2036-43. PubMed ID: 21479304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards.
    Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR
    Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles.
    May F; Peter M; Hütten A; Prodi L; Mattay J
    Chemistry; 2012 Jan; 18(3):814-21. PubMed ID: 22213584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-functionalized fluorescent silica nanoparticles for the detection of ATP.
    Moro AJ; Schmidt J; Doussineau T; Lapresta-Fernandéz A; Wegener J; Mohr GJ
    Chem Commun (Camb); 2011 Jun; 47(21):6066-8. PubMed ID: 21519611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Fluorescence Quantum Yields in Scattering Media.
    Lagorio MG
    Methods Appl Fluoresc; 2020 Sep; 8(4):. PubMed ID: 32674086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.
    Fölling J; Polyakova S; Belov V; van Blaaderen A; Bossi ML; Hell SW
    Small; 2008 Jan; 4(1):134-42. PubMed ID: 18064615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New fluorescent labels with tunable hydrophilicity for the rational design of bright optical probes for molecular imaging.
    Pauli J; Licha K; Berkemeyer J; Grabolle M; Spieles M; Wegner N; Welker P; Resch-Genger U
    Bioconjug Chem; 2013 Jul; 24(7):1174-85. PubMed ID: 23758616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bright photoluminescent hybrid mesostructured silica nanoparticles.
    Miletto I; Bottinelli E; Caputo G; Coluccia S; Gianotti E
    Phys Chem Chem Phys; 2012 Jul; 14(28):10015-21. PubMed ID: 22706523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrifugation aided highly sensitive detection of nitrite with a dye-silica conjugate featuring cleavable linkages.
    Xu H; Xue Z; Han J; Su X; Han S
    Bioorg Med Chem Lett; 2014 Oct; 24(20):4861-4. PubMed ID: 25227716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles.
    Ma K; Sai H; Wiesner U
    J Am Chem Soc; 2012 Aug; 134(32):13180-3. PubMed ID: 22830608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions.
    Würth C; Lochmann C; Spieles M; Pauli J; Hoffmann K; Schüttrigkeit T; Franzl T; Resch-Genger U
    Appl Spectrosc; 2010 Jul; 64(7):733-41. PubMed ID: 20615286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method.
    Santhi A; Umadevi M; Ramakrishnan V; Radhakrishnan P; Nampoori VP
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1077-83. PubMed ID: 15084326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Submicron-Sized Poly(heptafluoro-
    Jarzębski M; Siejak P; Przeor M; Gapiński J; Woźniak A; Baranowska HM; Pawlicz J; Baryła-Pankiewicz E; Szwajca A
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32344920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.