BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25955638)

  • 1. Development of the Corticospinal and Callosal Tracts from Extremely Premature Birth up to 2 Years of Age.
    Braga RM; Roze E; Ball G; Merchant N; Tusor N; Arichi T; Edwards D; Rueckert D; Counsell SJ
    PLoS One; 2015; 10(5):e0125681. PubMed ID: 25955638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography.
    Gilmore JH; Lin W; Corouge I; Vetsa YS; Smith JK; Kang C; Gu H; Hamer RM; Lieberman JA; Gerig G
    AJNR Am J Neuroradiol; 2007 Oct; 28(9):1789-95. PubMed ID: 17923457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging.
    Song JW; Gruber GM; Patsch JM; Seidl R; Prayer D; Kasprian G
    Pediatr Radiol; 2018 Apr; 48(4):486-498. PubMed ID: 29550863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gadolinium-Enhancing Lesions Lead to Decreases in White Matter Tract Fractional Anisotropy in Multiple Sclerosis.
    Chiang GC; Pinto S; Comunale JP; Gauthier SA
    J Neuroimaging; 2016 May; 26(3):289-95. PubMed ID: 26458494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: Comparison between region-of-interest and whole tract averaged measurements.
    Sparrow SA; Anblagan D; Drake AJ; Telford EJ; Pataky R; Piyasena C; Semple SI; Bastin ME; Boardman JP
    Eur J Paediatr Neurol; 2018 Sep; 22(5):807-813. PubMed ID: 29804802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.
    Akazawa K; Chang L; Yamakawa R; Hayama S; Buchthal S; Alicata D; Andres T; Castillo D; Oishi K; Skranes J; Ernst T; Oishi K
    Neuroimage; 2016 Mar; 128():167-179. PubMed ID: 26712341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional high-resolution diffusion tensor imaging and tractography of the developing rabbit brain.
    D'Arceuil H; Liu C; Levitt P; Thompson B; Kosofsky B; de Crespigny A
    Dev Neurosci; 2008; 30(4):262-75. PubMed ID: 17962716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using diffusion tensor imaging and fiber tracking to characterize diffuse perinatal white matter injury: a case report.
    Yeatman JD; Ben-Shachar M; Bammer R; Feldman HM
    J Child Neurol; 2009 Jul; 24(7):795-800. PubMed ID: 19435729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging.
    Dubois J; Dehaene-Lambertz G; Perrin M; Mangin JF; Cointepas Y; Duchesnay E; Le Bihan D; Hertz-Pannier L
    Hum Brain Mapp; 2008 Jan; 29(1):14-27. PubMed ID: 17318834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.
    Padilla N; Junqué C; Figueras F; Sanz-Cortes M; Bargalló N; Arranz A; Donaire A; Figueras J; Gratacos E
    Brain Res; 2014 Jan; 1545():1-11. PubMed ID: 24361462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants.
    Berman JI; Mukherjee P; Partridge SC; Miller SP; Ferriero DM; Barkovich AJ; Vigneron DB; Henry RG
    Neuroimage; 2005 Oct; 27(4):862-71. PubMed ID: 15978841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants.
    O'Gorman RL; Bucher HU; Held U; Koller BM; Hüppi PS; Hagmann CF;
    Brain; 2015 Feb; 138(Pt 2):388-97. PubMed ID: 25534356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging.
    Yoo SS; Park HJ; Soul JS; Mamata H; Park H; Westin CF; Bassan H; Du Plessis AJ; Robertson RL; Maier SE; Ringer SA; Volpe JJ; Zientara GP
    Invest Radiol; 2005 Feb; 40(2):110-5. PubMed ID: 15654256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography.
    Dubois J; Hertz-Pannier L; Dehaene-Lambertz G; Cointepas Y; Le Bihan D
    Neuroimage; 2006 May; 30(4):1121-32. PubMed ID: 16413790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns.
    Zwicker JG; Grunau RE; Adams E; Chau V; Brant R; Poskitt KJ; Synnes A; Miller SP
    Pediatr Neurol; 2013 Feb; 48(2):123-129.e1. PubMed ID: 23337005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White matter alterations of the corticospinal tract in adults born very preterm and/or with very low birth weight.
    Jurcoane A; Daamen M; Scheef L; Bäuml JG; Meng C; Wohlschläger AM; Sorg C; Busch B; Baumann N; Wolke D; Bartmann P; Hattingen E; Boecker H
    Hum Brain Mapp; 2016 Jan; 37(1):289-99. PubMed ID: 26487037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proper timing for the evaluation of neonatal brain white matter development: a diffusion tensor imaging study.
    Jin C; Li Y; Li X; Wang M; Liu C; Gao J; Sun Q; Qiu D; Zeng L; Zhou X; Li G; Zhang J; Zheng J; Yang J
    Eur Radiol; 2019 Mar; 29(3):1527-1537. PubMed ID: 30151640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organising white matter in a brain without corpus callosum fibres.
    Bénézit A; Hertz-Pannier L; Dehaene-Lambertz G; Monzalvo K; Germanaud D; Duclap D; Guevara P; Mangin JF; Poupon C; Moutard ML; Dubois J
    Cortex; 2015 Feb; 63():155-71. PubMed ID: 25282054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated corpus callosum development in prematurity predicts improved outcome.
    Thompson DK; Lee KJ; van Bijnen L; Leemans A; Pascoe L; Scratch SE; Cheong J; Egan GF; Inder TE; Doyle LW; Anderson PJ
    Hum Brain Mapp; 2015 Oct; 36(10):3733-48. PubMed ID: 26108187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions.
    Meng Y; Hu X; Zhang X; Bachevalier J
    Hippocampus; 2018 Nov; 28(11):838-845. PubMed ID: 29978933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.